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Abstract

The current study investigates the representation of tropical waves and esti-
mates tropical predictability limits in numerical simulations with the stochastic
convection scheme. The study of predictability limits included the investigation
of the current practical predictability limit, intrinsic predictability limit and
transition between them. For these purposes, the global numerical simulations
on the base of ICOsahedral Non-hydrostatic Model including the Plant-Craig
stochastic convection scheme were applied with, rescaled in several steps, the
current estimates of initial condition uncertainty of 12 real cases. The obtained
estimation of intrinsic predictability limit in the tropics exceeds two weeks and
is longer than the estimation for the mid-latitudes, especially for large scales.
Also, the shallower slope of background kinetic energy comparing to the mid-
latitudes has been estimated. Based on the simple Lilly model, it was found
that shallower spectral slope provide longer predictability limits and can be a
potential source of longer tropical predictability. The identification of tropical
waves showed very weak wave signals in the total precipitation rate and outgo-
ing longwave radiation fields, however Kelvin waves, n = 0 equatorial-Rossby
waves and mixed Rossby-gravity waves were recognized. The stronger signals
of these waves were observed in wind divergence field. Due to weak wave sig-
nals and slightly coupling to convection, the misrepresentation of the tropical
waves in numerical simulation with the stochastic scheme was concluded and
prevent to make a conclusion about tropical waves as a source of longer tropical
predictability limits.
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Chapter 1

Introduction

In recent decades, weather forecast quality has been significantly improved by
developing observational techniques, new data assimilation procedures and nu-
merical modeling. Leading position in global modeling is occupied by ECMWF,
with the ensemble lead time ahead by about one day compared to other global
centers and with a predictability time limit of about one week (ECMWF 2018).
At the same time, the predictability time limit may vary across geographical
zones for many reasons: due to regional climatic differences, due to inhomo-
geneities in climate datasets and their impact on uncertainties in the initial
conditions, and due to the different accuracy of data assimilation techniques
for different regions.

With respect to climate, the atmosphere is divided into broad latitude zones
in which the flow pattern is governed by certain underlying dynamics. For
instance, extratropical flow pattern is characterized by strong pressure and
temperature gradients and, consequently, by the predominance of baroclinic
disturbances. Tropical flow pattern has much weaker pressure and temperature
gradients as well as zones of high humidity, therefore tropical flow pattern is
driven primarily by moist convection. As a result, climatological differences
between zones may change predictability time limit of the particular meteoro-
logical variable. For instance: clouds and rains may have more spontaneous
behavior and therefore have shorter predictability time limits in the tropics
than at higher latitudes, and the opposite is true for temperature (Sobel 2012).
Also, because current global numerical weather prediction (NWP) models can-
not properly resolve moist convection, they employ different parameterizations,
which significantly affects the forecast errors, especially in the tropics, since
convective processes predominate in this region. Additionally, weather predic-
tion in the tropics becomes challenging also due to an insufficient observational
network and data assimilation techniques optimized for mid-latitude conditions,
which affect the accuracy of the initial conditions (Vogel et al. 2020). The com-
bination of the factors described above leads to a relatively low forecast skill
for the tropical region. However, Zhu et al. (2014), exploring the forecast skill
for precipitation of a global coupled ocean–atmosphere model over a range of
time scales, showed that tropical forecast skill is low only at lead times from
one day to a week. They found that the forecast accuracy near the equator
becomes equal to or greater than that in any other ranges of latitudes at about
4 days in December-February and 1 week in June-August, and then remains
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2 CHAPTER 1. INTRODUCTION

better than the extratropical forecast accuracy.
Besides the practical predictability time limit, conditioned by the current

forecast skill, there is an intrinsic limit of atmospheric predictability (Lorenz
1969), what is the limit to which the predictability time can be improved under
the nearly perfect initial conditions and dynamical system representation. The
existence of the finite intrinsic limit is caused by the chaotic nature of the atmo-
sphere and arises from scale interaction and rapid error growth in a multiscale
flow. According to many studies, for the mid-latitudes, the intrinsic limit of
predictability has an estimated value about two weeks (Zhang et al. 2019; Judt
2020; Selz et al. 2022). At the same time, it has been shown that estimations
of the intrinsic predictability time limit in the tropics are more than two weeks,
which is systematically longer than for the mid-latitudes, and this feature is
especially noticeable at large scales (Ying and Zhang 2017; Judt 2020). Thus,
although the current weather prediction skills for the tropics appear to be more
challenging compared to the mid-latitudes, the potential improvement in pre-
dictability times in the tropics is greater. However, the reasons for the longer
intrinsic predictability time limits in the tropics are still unclear.

Several recent studies investigating tropical predictability time limits have
focused their attention on large-scale convectively coupled equatorial waves
(CCEWs) and intraseasonal oscillations such as the Madden–Julian oscillation
(MJO) because of their relatively long predictability (Ying and Zhang 2017;
Li and Stechmann 2020; Judt 2020). CCEWs seem to be more resistant to
error growth than baroclinic systems and therefore were proposed as a possible
source of longer tropical predictability. However, the predictability of equatorial
waves and their contribution to the predictability in the tropics are still poorly
understood. The point is that employing of the convection parameterization
schemes leads to a misrepresentation of the equatorial waves (Judt and Rios-
Berrios 2021), which makes the estimations of the predictability time limit
values untenable. High resolution models are capable to resolve convection
processes for a correct assessment of the predictability time limits, but it is a
very computationally expensive way. Recently Judt (2020) has performed an
identical-twin predictability experiment, able to simulate convective processes,
aiming to estimate the predictability time limits for the different equatorial
wave types, but only two simulations have been investigated. Additionally,
Judt has concluded that the spectral slope of the background kinetic energy is
latitude-dependent and thus can be specified by the underlying dynamics, and
spectral slope estimation for the tropics is shallower than for the extratropics.
He obtained the quasi-uniformal spectral slope close to -5/3 in the tropics, the
slope near -3 at the synoptic scales and near -5/3 at the mesoscales in the
mid-latitudes and the slope close to -3 for the polar regions. Rotunno and
Snyder (2008), generalizing the Lorenz model for the predictability of a flow
with many scales of motion (Lorenz 1969), showed that the spectral slope of
the background kinetic energy of the flow plays a much more significant role in
the error-energy evolution than the dynamics governing the error growth. The
obtained results are consistent with the Lilly’s (1972) simple scaling arguments
for the predictability loss considering only the kinetic energy spectrum. Based
on this results, it may be assumed that the variations in spectral slopes between
different regions may be an additional source of longer predictability time limit
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in the tropics.
The assessment of the intrinsic predictability time limit requires a perfect

model assumption, thus a convection-permitting model resolution, since it may
be significantly affected by simulation of the convective processes. Comparison
between the upscale error growth simulated on the convection-permitting grid
with error growth simulated on coarser grids both with the deterministic and
stochastic convection schemes showed, that the error growth due to convection
is underestimated for simulations with parameterized convection for the grid
resolutions ≥ 5 km (Selz and Craig, 2015a). However, the stochastic convec-
tion scheme is able to better reproduce the convection-permitting results due
to taking into account the missing variability near the grid scale. Since the
conduction of numerical simulations with a convection-permitting resolution
is very computationally expensive, the employing of the stochastic convection
scheme may compensate slow upscale error growth due to convection at lower
resolutions, and thus better represents the perfect model assumption. How-
ever, the representation of equatorial waves in numerical simulations with the
stochastic convection scheme has not yet been evaluated.

The present study is devoted to estimating the limits of predictability for the
tropics and considering possible sources of longer tropical intrinsic predictabil-
ity, i.e. equatorial waves and nature of the slope of the background kinetic
energy spectrum. For the study, the numerical simulations by ICOsahedral
Non-hydrostatic (ICON) Model with the stochastic convection scheme have
been taken, conducted by Selz et al. (2022) to investigate the transition from
practical to intrinsic predictability in the mid-latitudes. In the current study,
the estimations of practical and intrinsic predictability limits were performed for
the tropics. For the reference and comparison, the numerical simulations with
the standard deterministic convection scheme were included, also conducted by
Selz et al. (2022).

The study is organized in two parts. The objective of the first part is
to explore the representation of the tropical waves in the simulations with
the stochastic convection scheme using the Hovmöller diagrams and Wheeler-
Kiladis space-time spectral analysis. The second part of the study is devoted
to predictability time limit estimation for the tropics and achieves the following
objectives:

• perform estimates of the practical and intrinsic predictability limits in
physical space and investigate the transition from the current practical to
the intrinsic predictability;

• perform estimates of the intrinsic predictability limits in spectral space
and provide assessments of the slope of the background kinetic energy
spectrum;

• investigate the role of spectral slope in error propagation and predictabil-
ity limits by means of the simple Lilly model.

The structure of the study is as follows: chapter 2 briefly describes the
employed data sources and experimental design. The tropical waves represen-
tation in the numerical simulations is presented in chapter 3, including the
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theoretical background, methods of wave identification and obtained results.
Chapter 4 is dedicated to the predictability limit estimations. In chapter 5, the
obtained results both for the wave representation and predictability estimations
are summarized and discussed.



Chapter 2

Experimental setup

In the current study, three sources of data have been employed: numerical sim-
ulations performed using the ICOsahedral Non-hydrostatic Model (ICON) with
the Plant-Craig (PC) stochastic convection scheme, numerical simulations per-
formed using ICON with the Tiedtke-Bechthold (TB) deterministic convection
scheme, and ECMWF Reanalysis v5 (ERA5) set of data. The applied numeri-
cal simulations have been conducted by Selz et al. (2022) to the investigation
of the practical and intrinsic predictability in the mid-latitudes.

The chapter contains a description of the used data sources and performed
experimental setup. The first section of the chapter provides a review of ICON
and the stochastic convection scheme. Section 2.2 is devoted to a brief overview
of the deterministic convection scheme and ERA5 data system. The experi-
mental design and the details of performed simulations are described in the last
section.

2.1 Numerical model and stochastic convection
scheme

ICON is a global numerical weather prediction model jointly developed by the
German Weather Service (DWD) and the Max Planck Institute for Meteorol-
ogy (MPI-M), described by Zängl et al. (2015). The non-hydrostatic dynamical
core in ICON is built on an icosahedral-triangular Arakawa C-grid that pro-
vides a nearly homogeneous coverage of the globe. Time integration in the
model is performed explicitly, with the exception of terms describing verti-
cally propagating sound waves. In addition, high computational efficiency is
achieved by time-splitting between the dynamical core and tracer advection,
physics parametrizations, and horizontal diffusion. Therefore, the so-called
slow-physics processes are evaluated from parametrization schemes on longer
time steps, and between two subsequent parametrization calls, received tenden-
cies remain constant in the dynamical core.

In the current study, ICON with 90 vertical levels and spatial resolution
of approximately 40 km (R2B6) has been implemented. The simulations with
spatial resolution, approximately 20 km (R2B7), for the Wheeler-Kiladis time-
spac, have been performed additionally. The ICON model setup did not in-
clude an ocean model, therefore the sea surface temperatures were fixed and
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provided with the initial conditions. The TERRA land-surface scheme (Heise
et al., 2006) supplemented with a multi-layer snow scheme and multi-layer soil
scheme with a tile-based approach to take into account the land-cover vari-
ability at the subgrid scale has been implemented. The TERRA settings also
included lake and sea ice models. The cloud microphysics was presented by the
five-category prognostic scheme described by Seifert (2008). Since the imple-
mented ICON model resolutions are not convection-permitting, two convection
parametrization schemes were applied: the PC stochastic convection scheme
(Plant and Craig, 2008) and the TB deterministic convection scheme (Tiedtke
1989; Bechtold et al. 2008). Furthermore, the ICON setup also includes the
following parametrizations (reformulated according the model requirements):
the fast-physics parametrizations described by Doms and Schattler (2004), the
turbulence scheme (Raschendorfer, 2001), the Lott and Miller (1997) subgrid-
scale orography scheme, the Orr et al. (2010) non-orographic gravity-wave drag
scheme, and the Rapid Radiation Transfer Model radiation scheme (Mlawer et
al., 1997).

Although the simulations for the two convection parametrization schemes
have been performed, the main object of the current study was the simulations
with the PC convection scheme. The TB deterministic convection scheme is a
standard parametrization scheme for convection that has been introduced as a
reference for comparison with the stochastic scheme and will be described in
the following section. Next, a brief overview of the theoretical bases for the
PC convection scheme are presented. A complete description has been made
by Craig and Cohen (2006) and Plant and Craig (2008).

There is a need to parametrize convection in global and mesoscale numerical
models because the resolved-scale motions in these models cannot reasonably
represent the moist convection. Moist convection parameterizations usually
apply the local equilibrium hypothesis, according to which the average convec-
tion properties in each grid cell can be completely determined as functions of
the large-scale resolved model variables. The PC scheme receives as input six
variables from the dynamical core: the zonal and meridional wind speeds, tem-
perature, and the concentration of solid, liquid and gaseous water phases. For
each grid cell described variables are space-averaged over a suitable region both
large enough to contain many clouds and small enough to be representative for
the current grid cell. The necessity and advantages of input averaging have been
discussed by Keane and Plant (2012) and Keane et al. (2014), but in brief, its
purpose is to produce a proper representation of the input large-scale thermo-
dynamic state of the atmosphere: to represent the mean state of atmosphere,
and not a state already perturbed during previous iterations. The averaged
input determines an equilibrium macrostate and the PC scheme implies that
local fluctuations in a cumulus cloud field (microstates) near that state are de-
scribed by the stochastic variability using the Gibbs canonical ensemble. For
convection initiation, the Kain-Fritsch trigger function is used, which, however,
is deterministic (Kain and Fritsch 1990; Kain 2004). Within each grid cell, the
PC scheme randomly initializes individual up-drafts with a upward mass flux
strength determined by a probability distribution function given by:



2.2. DETERMINISTIC CONVECTION SCHEME AND REANALYSIS DATA7

p(m)dm =
1

〈m〉
e−m/〈m〉dm (2.1)

where m is a mass flux per cloud and the angled brackets denote an ensemble
average (Craig and Cohen, 2006). The sum of the individual initialized up-
drafts provides the total upward mass flux M in the grid cell. The average
total mass flux 〈M〉 is obtained with a convective available potential energy
(CAPE) closure method, so that 90% of CAPE is eliminated within the closure
time scale.

Thus, the stochastic approach should be able to represent both the mean
effect of convection and its intrinsic variability, what distinguishes it from deter-
ministic schemes. Selz and Craig (2015b) have demonstrated that accounting
for variability provides a better representation of upscale growth of convective
uncertainty compared to the TB deterministic scheme, where a significantly
reduction of upscale error growth and , consequently, a overconfidence of the
model is observed. Higher accuracy of upscale error growth prevents overcon-
fidence of the model and therefore provides more realistic predictability time
limits. However, it should also be noted that the scheme does not take into
account sub-gridscale convective organization.

2.2 Deterministic convection scheme and reanal-
ysis data

In addition to the numerical simulations with the Plant-Craig stochastic con-
vection scheme, as a reference, the simulations with the Tiedtke-Bechthold
deterministic convection scheme were investigated. The TB scheme is a con-
ventional convection parametrization scheme for the most of numerical models,
e.g. ECMWF, ECHAM, COSMO, REMO etc. It has been originally developed
by Tiedtke (1989) and then has been continuously improved by Gregory et al.
(2000), Jakob and Siebesma (2003) and Bechtold et al. (2008), and further also
updated depending on the base model. Same as the PC scheme, the TB scheme
is the mass flux scheme of a cloud ensemble, so its basic components are also
the convection trigger function, the cloud model and the closure assumption.
The TB scheme utilizes the bulk cloud model method, so a single cloud model
represents an ensemble of clouds. As the scheme is deterministic, it solves a set
of ordinary differential equations for convective updraughts and downdraughts
(entraining-detraining plume model), considering both the organized and tur-
bulent transfer. The trigger for convection initialization is based on the parcel
instability and parcel velocity. The scheme discriminates three different types
of convective parametrizations: deep, shallow and mid-level convection, and the
closure assumption depends on the type of convection. For instance, for the
deep convection the CAPE relaxation closure is applied. Also the TB scheme
contains a highly simplified microphysical parameterizations, for instance a con-
version of cloud condensate to precipitation is directly proportional to amount
of cloud condensate. The mass flux approach in general, and the TB scheme in
particular, are the quite powerful and simple methods for convective overturn-
ing, which makes it widely used. In contrast to the stochastic scheme, which
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also requires the equilibrium distribution and the scale for spatial averaging,
the deterministic convection scheme only requires the mean mass flux in a grid
cell.

Besides the numerical simulations described above, the ERA5 data also
have been considered as a source of climatological reference data. ERA5 is the
fifth generation of ECMWF atmospheric reanalysis system, which combines
broad amounts of historical observations from 1950 to present time into global
scale together with advanced modeling and data assimilation systems, such
as model forecasts of the ECMWF Integrated Forecast System (IFS) and 4D-
Var data assimilation. The ERA5 dataset contains hourly-averaged values of a
large number of atmospheric, land and oceanic climate parameters. The ERA5
data system employs 137 pressure levels from the surface up to 0.01 hPa with
the spatial resolution of 31 km. The complete description of the reanalysis
data sources is presented in the ERA5 data documentation at www.ecmwf.int.
In current study, the ERA5 data sets have been used as reference point for
the tropical waves representation and as the climatological reference data for
predictability time limit estimations.

2.3 Design of experiments

The global numerical simulations created with the ICON model both for the
Plant-Craig stochastic convection scheme and Tiedtke-Bechthold determinis-
tic convection scheme have been carried out. The initial conditions for the
simulation have been taken from the ECMWF ensemble of data assimilation
(EDA) system (Isaksen et.al, 2010). The EDA creates a 50 member ensemble
of initial conditions and the members are presented with assimilated observa-
tions perturbed by the random noise given by the probability density function of
observation error. Due to high computational and volume costs, only five mem-
bers of the ensemble have been randomly selected for this study. To investigate
both the practical and intrinsic predictability and also the transition between
them, following Selz et al. (2022), a series of experiments has been performed
with rescaling the perturbations in the initial condition by five different factors:
100%, 50%, 20%, 10% and 0.1%. The coefficients indicate the percentage taken
from the initial state of the EDA. Thus, the experiments with the 100% rescale
factor correspond to the current practical predictability, and the 0.1% rescale
experiments are the closest estimate for the intrinsic predictability time limit
in the current study. The list of all experiments with the corresponding labels
is presented in the Tab. 2.1.

For the sufficient representation of results, 12 simulation cases, each con-
tains five ensemble members, have been investigated in the current study. The
cases were distributed over one year, namely from October 2016 to September
2017, and each case consisted of 31 subsequent days starting from the first day
of each month, e.g. 1th of October, 1th of November, etc. (same as in Selz
2019; Selz et al. 2022). Because of available computational and volume op-
tions and the required large number of simulations, it was not possible to apply
the spatial model resolution permitting for convection (resolution ≈ 40 km has
been applied), which was the reason for using the convection parametrization
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Experiment Rescale Convection Singular ICON ICON Number of Number of
label factor scheme vectors lead time resolution members cases

100%PC 100% PC − 31 days R2B6 5 12
50%PC 50% PC − 31 days R2B6 5 12
20%PC 20% PC − 31 days R2B6 5 12
10%PC 10% PC − 31 days R2B6 5 12
0.1%PC 0.1% PC − 31 days R2B6 5 12
100%TB 100% TB − 31 days R2B6 5 12
10%TB 10% TB − 31 days R2B6 5 12
0.1%TB 0.1% TB − 31 days R2B6 5 12

100%svPC 100% PC + 31 days R2B6 5 12
0.1%longPC 0.1% PC − 90 days R2B7 1 1
0.1%longTB 0.1% TB − 90 days R2B7 1 1

Table 2.1: List of performed ICON experiments with the corresponding labels.

to more properly represent unresolved convection-scale motions. Since, the cur-
rent study investigated intrinsic predictability, the possible effects of the model
errors were not taken into account and the perfect model assumption was im-
plied. As mentioned above, the stochastic convection scheme better represents
the upscale error growth from convection compared to the deterministic con-
vection scheme (Selz and Craig, 2015b), therefore stochastic convection scheme
may reduce the model error from the improper production of corresponding
part of error growth at high resolutions. It should be noted that in the current
study, employing the stochastic convection scheme is an attempt to make the
assumption of the ideal model more accurate, and not an attempt to identify
any model error.

The ensemble (ENS) system at ECMWF is characterized by an addition of
the singular vectors to the initial conditions set, which are a set of perturba-
tions that grow most rapidly over a finite-time interval and determine the local
instability properties. Singular vectors affect only dry part of the linearized
model and can be evaluated through the singular value decomposition of the
so-called forward tangent linear operator (Diaconescu and Laprise, 2012). In
the ENS system, the representation of singular vectors is different for the trop-
ics and extratropics. The perturbations combine the 5 and 50 leading singular
vectors over the tropics and extratropics, respectively, and the special version
of the singular vectors are employed to specify uncertainties in the moist pro-
cesses typical for the tropics, e.g. tropical cyclones (see the documentation at
www.ecmwf.int for more details). However, since singular vectors can partially
compensate for the shortcomings of the model error representation, and the
model in this study is assumed to be perfect, adding them to the initial con-
ditions is under discussion. Furthermore, with the rescaling of the initial con-
dition uncertainty, the relevance of the singular vector rescaling is disputable.
Therefore, singular vectors were not included in the experiments, except for an
additional 100%svPC-experiment to investigate their effect on predictability
time limit estimations (Selz et al. 2022).

Thus, as the main object of current study was the stochastic convection
scheme, the numerical simulations with the stochastic scheme have been con-
ducted for all five different rescaling coefficients and, as mentioned above, one
more additional experiment has been carried out for a 100% rescale factor, tak-
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ing into account the singular vectors. Besides the different perturbations in the
initial condition, a different random seed of the convection scheme has been
applied for every ensemble member for different representation of convective
clouds within one macrostate. The numerical simulations with the determinis-
tic convection scheme served as the control and reference simulations, so only
100%, 10% and 0.1% rescale factors have been considered. Insofar as the ap-
plied convection scheme is deterministic, no addition of further diversity is
required. The tropical wave representation studies used 0.1%-experiments for
both schemes and took ERA5 data for the same cases. In the assessment of the
predictability time limit estimations all rescale experiments have been taken
into account.

As additional control experiments for a tropical wave representation, the
long-run numerical simulations both for the PC and TB convection schemes for
a longer period have been conducted: 90 days with initialization date of 1th of
July. Since this investigation exclusively applied the simulations with a 0.1%
rescale factor, the long-run simulations were only performed for the 0.1% scale
of the initial condition uncertainty and the ICON model has been operated
with resolution ≈ 20 km (R2R7).



Chapter 3

Tropical waves representation

This chapter is dedicated to the representation of the tropical waves in the
simulations with the stochastic convection scheme. Section 3.1 describes the
basic theoretical concepts of tropical meteorology concerning tropical waves
as an important aspect of tropical weather and climate. In section 3.2, the
identification of different types of tropical waves in the simulations with the
stochastic convection scheme has been performed.

3.1 Theoretical background

This section begins with general aspects of the mean atmospheric circulation
in the tropics. In subsection 3.1.2, the Matsuno theory of free equatorial waves
is explained, which is the basis for understanding the dynamics of equatorial
waves. The last subsection is devoted to convectively coupled equatorial waves
with its characteristics and their connection with the Matsuno theory.

3.1.1 Atmospheric circulation in the tropics

The Earth’s atmosphere is climatologically inhomogeneous, which is primary
associated with the orientation of the Earth’s rotation axis relative to the Sun
and determines the amount of incoming solar radiation reaching the Earth’s
surface. On the equator, the sunlight reaches the surface almost perpendicu-
larly, then with increasing latitude, the angle of incidence decreases, thus the
sunlight warms the area near the equator much more than the poles. Taking
into account the amount of Earth’s outgoing radiation, which is also latitude
dependent, there is an excess of net radiative energy near the equator and its
deficit at higher latitudes. Because the surface-atmosphere system is in thermal
equilibrium, there is a mean energy transport to the pole by the atmospheric
circulation. The magnitude of the Coriolis force also varies in different parts
of the Earth: the Coriolis force is much weaker at the equator than at higher
latitudes. Thereby, although the atmosphere is a continuous system, based
on the general characteristics of the mean atmospheric circulation and forcing
in different regions, the particular broad latitude zones may be distinguished.
One of these zones is the tropics. The geographic location and extent of the
tropical region can be defined in different ways based on different criteria, e.
g. direct overhead solar radiation, net positive energy balance, mean monthly
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temperatures, etc. (Feeley and Stroud 2018). However, Riehl (1979) proposed
the meteorological definition of the tropics as the parts of the Earth where at-
mospheric processes differ significantly from those at higher latitudes. Based
on this definition, tropics can be roughly distinguished from extratropics by the
dividing line between the easterly and westerly wind regimes, and the position
of the dividing line can vary with longitude and season. Detailed descriptions
of the tropical climatology can be found in Holton and Hakim (2013, chapter
11), Smith (2015, chapter 1) and Vallis (2010, chapter 11).

Incoming solar radiation is mainly absorbed by oceans and land areas, how-
ever, part of received energy is transmitted to the atmosphere in the form
of latent and sensible heat emitted from the surface and transported to the
poles by the atmospheric circulation. Thus, despite the excess of radiative en-
ergy in the tropics, the tropical atmosphere is characterize as a region of net
radiative cooling. The tropical mean meridional circulation consists of the ther-
mally direct Hadley circulation: heated air close to the equator rises up to the
tropopause (10-15 km above the surface), where moves to the poles, cools and
sinks near the subtropics, around 30°N and S of the equator, then moves to the
equator. The trade winds from the Northern and Southern hemispheres come
together close to the equator in a so-called the Intertropical Convergence Zone
(ITCZ). The ITCZ is a zonal band of deep convection and high precipitation
rates, which is characterized by low surface pressure and a large vertical extend
of the troposphere.

Additionally, under the action of the Coriolis force, the trade winds in both
hemispheres are deviated westward and cause the zonal variations in sea surface
temperature (SST), mainly due to wind-driven ocean currents, which leads to
a formation of east-west atmospheric circulation cells in the longitude-altitude
plane along the equatorial belt. For instance, in the particular significant
Walker cell, which located in the equatorial Pacific, air rises over the warm
waters of the western Pacific, moves from west to east in the upper troposphere
and descends over the cold water of the eastern Pacific. There are also zonal
circulation cells, which are driven by zonal pressure gradients due to different
diabatic heating over ocean and land areas. Nowadays, the Walker circulation
is commonly referred to as a set of zonal circulation cells along the equatorial
belt. In some regions, the Walker circulation may dominate over the Hadley
circulation and both the Hadley circulation and Walker circulation are subject
to small seasonal variations.

Thereby, comparing to the extratropics, the tropics is an area characterized
by an excess of solar radiation with smaller seasonal variations, which, together
with the large ocean coverage, contributes to an enhanced latent heating of
the tropical atmosphere and strong convective activity. A weak Coriolis force
provides lower pressure and temperature gradients, so the tropical flow is driven
mainly by moist convection. Thus, the mean tropical circulation is presented
by the Hadley and Walker circulations.

In addition to the mean circulation, in the tropical atmosphere there are
several types of instabilities that are not typical for the extratropical atmo-
sphere, where the nature of the flow is characterized by the predominance
of baroclinic instabilities. Tropical instabilities are characterized by a weak
geostrophic balance, strong coupling to convection and multiscale interactions.
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The most significant tropical instabilities are tropical cyclones, equatorial waves
(tropical waves), Madden-Julian Oscillation (MJO) and The El Niño-Southern
Oscillation (ENSO).

The present study is devoted to equatorial waves. The equatorial waves are
large-scale geophysical fluid waves trapped near the equator, which propagate
in zonal and vertical directions and may occur at any height level. They cause
oscillations in the pressure, temperature and winds strong enough to impact
the large-scale weather and can transmit the influence of local energetic dis-
turbances to wider regions, sometimes spanning the entire equator (Wheeler
2003). The predictability studies also show that predictability time limits of
convectively coupled equatorial waves are relatively long and may be a reason of
longer intrinsic predictability in the tropics (Judt 2020). The observations show
that dispersive properties of equatorial waves are consistent with the dynam-
ics of the Matsuno’s Shallow Water (SW) theory (Wheeler and Kiladis 1999),
however some aspects of their dynamics are still insufficiently understood. The
following is the theory necessary for a basic understanding of the existence and
occurrence of equatorial waves.

3.1.2 Matsuno’s theory for free equatorial waves

A theory of free dry equatorial waves was first introduced by Matsuno (1966)
within the linear SW theory. The SW equations govern the motion of a single
thin layer of incompressible fluid of homogeneous density on a rotating sphere
and can be derived from the primitive equations. The primitive equations gov-
ern the three-dimensional large-scale thermodynamic fields in the stable strati-
fied fluid and, linearized about a motionless basic state, can be mathematically
separated into a vertical structure equation and "shallow water" equations.
Thus, the SW equations govern the horizontal and timporal evolution of each
normal atmospheric mode and the vertical structure equation determines the
mode’s vertical structure and its so-called "equivalent depth". The equivalent
depth provides a link between two separated parts of equations: in the SW
equations, the equivalent depth is the depth of the fluid layer required to deter-
mine the proper horizontal and timporal structure of each mode. The following
is a brief introduction to Matsuno’s theory of free equatorial waves. Detailed
description of the theory can be found in Matsuno (1966), Kiladis et al. (2009),
and Wheeler and Nguyen (2015).

Matsuno considered the inviscid SW equations, where the restoring forces
are gravity and a linearly varying Coriolis parameter, f ≈ βy, where y is a
distance from the equator, β ≡ 2Ω/a, Ω and a are the angular velocity and
radius of Earth, respectively (β-plane approximation). Thus, the linear SW
equations for a particular vertical normal mode l are

∂ul
∂t
− βyvl = −∂φl

∂x
, (3.1)

∂vl
∂t

+ βyul = −∂φl

∂y
, (3.2)

∂φl

∂t
+ ghe

(
∂ul
∂x

+
∂vl
∂y

)
= 0, (3.3)



14 CHAPTER 3. TROPICAL WAVES REPRESENTATION

where ul and vl are the zonal and meridional velocities in x and y directions, t
is time, φl is the geopotential, g is the gravitational acceleration, and he is the
equivalent depth.

Matsuno derived the complete set of zonally propagating wave solutions
trapped to the equator, the equatorial waves, from the linear SW equations.
Zonally propagating wave solutions are sought are written as ul

vl
φl

 =

 û(y)
v̂(y)

φ̂(y)

 exp[i(kx− ωt)], (3.4)

where k is zonal wave number and ω is frequency. Substituting (3.4) into the
set of equations (3.1)-(3.3) and rearranging them to exclude both û and φ̂, the
second-order differential equation in v̂ can be yielded:

d2v̂

dy2
+

(
ω2

ghe
− k2 − k

ω
β − β2y2

ghe

)
v̂ = 0. (3.5)

Since the solutions trapped to the equator are considered and β-plane ap-
proximation is applied, the boundary condition for the equation (3.5) is required
under which the solutions will decay for a large |y|. Together with the bound-
ary condition, the differential equation (3.5) has the same form as Schrödinger
equation for a simple harmonic oscillator. For such form of equation, the bound-
ary condition is fulfilled only if the constant part of the coefficient of v̂ in (3.5)
meets the relation

√
ghe
β

(
ω2

ghe
− k2 − k

ω
β

)
= 2n+ 1; n = 0, 1, 2, ... (3.6)

The equation gives the relation between zonal wavenumber k and frequency ω
for each positive integer n (the meridional mode number), therefore it defines
a horizontal dispersion relation of equatorial waves.

Equation (3.6) is cubic with respect to the frequency ω and provides three
classes of solutions for specified n and k. At low frequencies, the term ω2/ghe
can be neglected and (3.6) gives an approximation of one class of solutions as

ωER ≈
−βk

k2 + (2n+ 1)β/
√
ghe

. (3.7)

The wave class corresponding to (3.7) is called equatorial Rossby (ER) waves.
Since ωER is always of opposite sign to k, these waves are only westward prop-
agating.

At high frequencies, the term −kβ/ω in (3.6) can be neglected and (3.6)
provides the approximations of solutions for two other classes:

ωIG ≈ ±
[
(2n+ 1)β

√
(ghe) + k2ghe

]1/2
. (3.8)

The wave classes corresponding to the positive and negative root of (3.8)
are called eastward inertio-graviry (EIG) and westward inertio-gravity (WIG)
waves, respectively.

For the special case when n = 0, its exact solutions can be directly obtained
from the equation (3.6):
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ωn=0 = k
√
ghe

[
1

2
± 1

2

(
1 +

4β

k2
√
ghe

)1/2
]
. (3.9)

The positive root corresponds to EIG waves and the negative root provides an-
other class of solutions, mixed Rossby-gravity (MRG) waves, which propagate
westward and share the properties of both Rossby and inertio-gravity waves.

The wave class, which is not covered by the solutions of the equations (3.5)
and (3.6), is Kelvin waves for which v̂l = 0. The solutions for this wave class is
obtained from (3.1)-(3.3) by substituting û, v̂ and φ̂ from (3.4), setting v̂ = 0
and combining the equations to exclude φ̂. The dispersion relation for Kelvin
waves is given by:

ωK =
√
ghek. (3.10)

Since ωK is always of the same sign to k, the Kelvin waves are eastward prop-
agating. This wave is often labeled as the n = −1 wave, because its dispersion
relation can also be obtained by assuming n = −1 in (3.6).

All five classes of the obtained solutions are shown in Fig. 3.1, where the
nondimensional zonal wave number k∗ ≡ k(

√
ghe/β)1/2 and frequency ω∗ ≡

ω/(β
√
ghe)

1/2 are taken to allow the curves to be plotted irrespective of the
values of he, β and g. Because equations (3.1)-(3.3) are linearized, any linear
combination of the waves obtained above is also a solution to the equations.

Figure 3.1: Dispersion curves for equatorial waves (up to n = 4) as a function
of the nondimensional frequency, ω∗, and nondimensional zonal wave number,
k∗. Westward propagating waves (relative to the zero basic state) appear on
the left, and eastward propagating waves appear on the right. For consistency
with equation (3.6), the Kelvin wave solution is labeled as n = −1. Figure is
taken from Kiladis et al. (2009), Figure 2.
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The full horizontal structures of the equatorial waves, except for Kelvin
waves, can be obtained by substituting the solutions for v̂ from (3.5) together
with the dispersion relations from (3.6) into the equations (3.1)-(3.3) taking
into account (3.4). The full horizontal structure of the Kelvin wave may be
obtained from equitions (3.4) and (3.1)-(3.3) with v̂ = 0. Fig. 3.2 shows the
full structures for the Kelvin wave, n = 1 ER wave, MRG wave, n = 0 EIG
wave, and n = 1 and n = 2 WIG waves. All scales and fields have been nondi-
mensionalized by taking the units of time and length as [T ] = (1/β

√
ghe)

1/2

and [L] = (
√
ghe/β)1/2, respectively. The equator runs through the center of

each diagram. Essential differences in the general horizontal structures of the
equatorial waves can be observed. For the Kelvin and IG waves, the divergence
signal is very strong, while the magnitude of their winds and geopotential are
relatively weak, so these waves tend to have a more divergent behavior. For
Rossby and MRG waves the opposite is true, so these waves have a much more
rotational behavior.

Shortly after the Matsuno’s theory (Matsuno 1966) was introduced, the first
observational evidences for MRG (Yanai and Maruyama 1966; Maruyama 1967)
and Kelvin waves (Wallace and Kousky 1968) in the equatorial stratosphere
were discovered, which showed a good agreement with the SW theory. Their
vertical structures indicated upward energy dispersion, consistent with forcing
from below (Holton 1972, 1973), so their initial energy source was assumed
because diabatic heating by moist convection in the troposphere. The observed
waves were considered to be "free" (or "dry"), since, after occurrence, they were
not coupled to convection or any other forcing. However, in the following years,
the first attempts were made to detect westward and eastward-propagating
disturbances in cloud fields using satellite observations (Chang 1970; Wallace
and Chang 1972; Reed and Recker 1971). Later, the more detailed spectral
analysis of tropical cloudiness was provided by Gruber (1974), Zangvil (1975),
and Zangvil and Yanai (1980, 1981), during which the question was raised
about the relationship between deep convection and equatorial SW modes from
Matsuno’s theory.

However, the detailed observational studies of equatorial waves were not car-
ried out until the 1990s, when the long-period global satellite and operational
data analyses became available. First Takayabu (1994) and then Wheeler and
Kiladis (1999, hereafter WK99) performed an analysis of the outgoing long-
wavelength radiation (OLR) observed from the satellite, a proxy indicator of
convection, were able to identify the organized deep convection correspond-
ing to the normal modes of the SW theory. The observed waves were called
convectively coupled equatorial waves.

3.1.3 Convectively coupled equatorial waves

Performing the space-time spectral analysis for OLR field, WK99 identified a
range of statistically significant spectral peaks corresponding to the dispersion
relations from the SW theory with the equivalent depths in the range of 12-50
m, namely the Kelvin peaks, ER peak for n = 1, MRG peaks, EIG peaks for
n = 0, and WIG peaks for n = 1 and n = 2. Furthermore, they showed that
these spectral peaks also have a coherent relationship with the dynamical field
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Figure 3.2: Horizontal structures of a subset of the zonally propagating wave
solutions to the shallow water equations on an equatorial β-plane (equations
(3.1)– (3.3)). Each is shown for a nondimensional zonal wave number, k∗ = ±1.
Hatching is for divergence, and shading is for convergence, with a 0.6 unit
interval between successive levels. Unshaded contours are geopotential, with
a contour interval of 0.5 units. Negative contours are dashed, and the zero
contour is omitted. The maximum wind vectors in each panel are specified in
the bottom right corner. Figure is taken from Kiladis et al. (2009), Figure 3.
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by performing the analysis for the microwave sounding unit temperatures and
1000 hPa geopotential heights. Comparing the obtained CCEWs to uncou-
pled equatorial waves, which also appear in the dynamical field, they showed
that the CCEWs have approximately an order of magnitude smaller equivalent
depths. It is assumed that smaller equivalent depths are due to the interac-
tion of convection and dynamics, but the discrepancy between the observed
and theoretical equivalent depths has become one of the main problems of the
CCEW theory. (Kiladis et al. 2009). Nevertheless, both the dispersion features
and the structure of these CCEWs are in sufficient agreement with the linear
theory. WK99 identified the common features of each wave type, which have
since been confirmed in many studies and further summarized by Kiladis et al.
(2009).

Based on WK99 study, the main characteristics of the geographic distribu-
tion of CCEWs can be determined. So, the occurrence of CCEWs is widely
observed in equatorial regions with wave activity centers over the Indian to
western Pacific Ocean sectors, South America and Africa, which undergo a sea-
sonal shift from south of the equator in southern summer to the north of the
equator in northern summer. The CCEWs differ significantly in their mag-
nitudes: Kelvin and ER waves are relatively strong, MRG and IG waves are
weaker and have similar magnitudes. The Kelvin waves are global in their
occurrence and observed throughout the year, but especially in the Atlantic
sector and in southern summer. The n = 1 ER waves occur mainly in southern
summer over the Indian and western Pacific sectors. The MRG and n = 0
EIG waves are centered on the dateline, and the n = 1 and n = 2 WIG waves
are centered west to the dateline. The strength of the signal of these waves
is similar in the southern and northern summers and n = 2 WIG waves are
characterized by small seasonal variation. Based on the observed structures,
the Kelvin, n = 1 ER and n = 1 WIG waves are symmetric with respect to the
equator and MRG, n = 0 EIG and n = 2 WIG waves are antisymmetric. This
behavior is consistent with the linear SW theory (Kiladis et al. 2009) and can
be observed in Fig. 3.2, which shows the horizontal structures of theoretical
wave modes corresponding to CCEWs.

On a spatial scale, the CCEWs are distributed from synoptic to planetary
scales, with Kelvin waves being the largest and IG waves being the smallest.
The Kelvin waves propagates eastward with a typical phase speed of 15-20 m
s−1 and a time scale of 10 days. The n = 1 ER waves are westward-propagating
and relatively slow with phase speed of around 5 m s−1 and propagation time
about 10-15 days. The MRG waves also propagate westward with a phase
speed of 15-25 m s−1 and propagation time of 3-7 days. The n = 0 EIG have a
relatively high phase speed of 25-50 m s−1 and small propagation time, around
3 days. The typical phase speeds for n = 1 and n = 2 WIG waves are 15-35 m
s−1 and time propagation propagation time is up to 2 days.

3.2 Tropical waves representation results

The characteristics of the CCEWs, both from the SW theory and observational
studies, may serve for the identification of the individual wave types. Aiming
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to explore the representation of the equatorial waves in the simulations with
the stochastic convection scheme, the Hovmöller diagrams for total precipita-
tion were applied. The obtained results are discussed in in subsection 3.2.2.
The comprehensive identification of CCEWs in the numerical simulations was
performed with the space-time spectral analysis and is presented in subsection
3.2.3. The study of the wave representation also included the comparison with
the wave representation in simulations with the standard deterministic scheme
and reanalysis data. The next subsection provides an overview of the climatol-
ogy features for these data sources as it is necessary for the interpretation of
the results.

3.2.1 Climatology comparison

The convection parameterization not only simulates the deep convection, but
also regulates the vertical distribution of heat, moisture, and momentum (Kain
and Fritsch 1990), thus precipitation, temperature and wind fields may be sig-
nificantly affected by the applied convection scheme. To compare the climatol-
ogy of specified fields in the stochastic and deterministic schemes and reanalysis
data, time series for precipitation rate, temperature and wind field at 300 hPa
(tropopause region) have been investigated. For each time step in 31-day period
averaging was performed over all simulation cases and over all members of the
ensemble (for the numerical simulations). To find out whether the effect of con-
vection parameterization on fields differs in different regions, time series were
constructed for both the tropics and mid-latitudes. For the tropics, the area
between 15°S and 15°N has been selected. For the mid-latitudes, two latitudinal
zones have been considered: 40°N-60°N for the northern hemisphere and 40°S-
60°S for the southern hemisphere. The final results are averaged over latitudes
corresponding to a particular region. For the mid-latitudes the averaging for
both hemispheres was performed.

The time series for the precipitation rate are shown in Fig. 3.3. For the
tropics, the total precipitation rate according to numerical simulations data is
lower than according to reanalysis data, but they both show the same behavior.
All three data sources show a clear periodic features: the diurnal cycle. In the
tropics, the main contributor to the total precipitation is the convective part.
For numerical simulations experiments, the intensity of convective precipitation
exceeds the intensity of grid-scale precipitation by several tens of times; accord-
ing to the reanalysis data, it is only a few times. The convective precipitation
rate is significantly lower according to the reanalysis data and the opposite
is true for the grid-scale precipitation rate, which is almost negligible for the
TB scheme. In the mid-latitudes, the total precipitation rate is several times
lower than in the tropics and the diurnal cycle is less pronounced, since tropics
are an area of strong convection with a large diurnal variation. In addition,
in the mid-latitudes, the contribution of the two precipitation types ddiffers
from that in the tropics: most of the total precipitation rate is provided by the
grid-scale precipitation. While for the total precipitation rate, both schemes
are equally consistent with the reanalysis, a comparison of the convective and
grid-scale precipitation rates shows better agreement between the TB scheme
and ERA5. In the PC scheme rates of concective and grid-scale precipitation
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Figure 3.3: Time series of the total, convective and grid-scale precipitation rates
for the tropics and mid-latitudes averaged over all 12 and 24 simulation cases,
respectively. The blue line is for the stochastic simulations, the red one is for
the deterministic simulations. The green line indicates the ERA5 reanalysis
data.

are underestimated and overestimated, respectively.
Also, time series were evaluated for a temperature at 300 hPa, which are

shown in Fig. 3.4. In the tropics, after initialization of the numerical simula-
tion, there is a significant increase and decrease in the stochastic and determin-
istic simulations, respectively, until the temperature stabilizes. As expected,
there is little variation of precipitation rate over the study period in the trop-
ics. Compare to the reanalysis data, the stochastic scheme overestimates the
temperature values, while the deterministic scheme underestimates them. In
the mid-latitudes, both schemes overestimate the temperature, but are in a
relatively good agreement with each other.

The time series of the zonal and meridional wind components are shown
in Fig. 3.5. The most significant differences are observed for the zonal wind
component in the tropics. The TB scheme provides relatively close estimates
for the first half of the period but after that it begins to underestimate the
zonal wind component and a change in the wind regime has been observed over
the past few days. The PC scheme shows an overestimation of the zonal wind
magnitude over the whole period. Both the stochastic convection scheme and
the reanalysis data show the westward moving winds, which is consistent with
the wind regime in the tropics. In the mid-latitudes, the zonal wind component
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Figure 3.4: As in Fig. 3.3, but for the temperature at 300 hPa.

is much larger than in the tropics due to high pressure and temperature gradi-
ents and shows eastward movement. Although both schemes and the reanalysis
data are in relatively good agreement for the first 6–7 days, after this period
the zonal wind component begins to be underestimated in numerical simula-
tions. The meridional wind components agrees between both schemes and the
reanalysis data for the tropics and mid-latitudes.

Figure 3.5: As in Fig. 3.3, but for the zonal and meridional wind components
at 300 hPa.

Additionally, the spatial structure of the total precipitation values has been
investigated. The cumulative values of total precipitation for the entire 31-day
period were calculated, averaged over all simulation cases and members (for
numerical simulation) and shown in Fig. 3.6. The general features of spacial
structures are consistent between the simulations and reanalysisdata, high and
low precipitation zones are consistent across the globe. The tropics have wide
areas of high rainfall, especially in the Pacific Ocean north to the equator and
over the western Pacific sector. In the areas of high precipitation, the reanal-
ysis data usually gives a slightly higher values than the numerical simulations,
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Figure 3.6: Spatial structure of the total precipitation accumulated over the
31 days period. The red lines indicate the boundaries of the investigated trop-
ical region (15°S - 15°N). The blue lines show the mid-latitudes zones in the
Northern and Southern hemispheres (40°S - 60°S and 40°N - 60°N).
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which is consistent with the underestimation of the total precipitation rate in
simulations observed in the time series. The amount of precipitation in the mid-
latitudes are significantly lower and more uniform, especially in the Southern
hemisphere which is characterized by a large ocean cover. In general, the total
precipitation is more intensive over the ocean than over the land. However,
between simulations and reanalysis data for some regions, there are differences
in the intensity of the total precipitation.

Figure 3.7: Spatial structure of the difference in total precipitation accumulated
over the 31 days period between the convection schemes and reanalysis data.
Upper figure is the total precipitation difference between the PC scheme and
ERA5, bottom figure is the difference between the TB scheme and ERA5.

Fig. 3.7 shows the difference in the amount of the total precipitation be-
tween the individual schemes and the reanalysis data. The spatial structures
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of the difference provide a relatively good agreement between the simulations.
The regions of over- or underestimation of the total precipitation are consistent
between the schemes and are most pronounced in the tropics. Thus, over the
Pacific and Atlantic Oceans, both schemes overestimate the precipitation north
to the equator and underestimate it south to the equator. Over the Indian
Ocean the opposite is true. The PC scheme overestimates the area of heavy
precipitation over the northern Pacific more significantly than the TB scheme.
The main difference between the schemes is observed on the land surface in
the regions of Indonesia and Philippines. In the mid-latitudes the variance be-
tween the numerical simulations and the reanalysis data is significantly lower.
Based on the obtained spatial structures, it can be concluded that, although
the spatial structures obtained as a result of the numerical simulations are in
good agreement with the reanalysis data, the consistency between convection
schemes is higher than between the individual schemes and ERA5.

Summarizing the obtained results of the performed spatial structures of the
total precipitation and the time series of the total precipitation rate, wind and
temperature, it can be concluded that in the tropics the precipitation fields
are more consistent between the simulations compare to the reanalysis data,
however it is not possible to make such a conclusion for the temperature and
wind fields at 300 hPa. Compared to the reanalysis data, the stochastic scheme
underestimates the total precipitation rate but overestimates temperature and
the magnitude of the zonal wind component. In the mid-latitudes, there is
larger variation between simulations for convective and grid-scale precipitation,
but also better consistency for the total precipitation rate, temperature and
wind components.

3.2.2 Hovmöller diagrams

According to the performed climatological studies, in the tropics, the represen-
tation of the precipitation field in the stochastic and deterministic simulations
is in relatively good agreement with the reanalysis data and is even more con-
sistent between schemes. As the first step in the investigation of the tropical
waves representation, the Hovmöller diagrams for the total precipitation rate
have been performed. The Hovmöller diagrams is a widespread method of
plotting meteorological field to highlight the behavior of geophysical waves, in
particular tropical waves, displaying both the temporal change and the spatial
variability of a meteorological variable. This method has been used in many
previous studies of tropical waves behavior (WK99; Kiladis et al. 2009; Kim
and Alexander 2013; Roundy 2004; Judt 2020; etc.), commonly applying the
Hovmöller diagrams of outgoing longwave radiation or precipitation.

In the current study, the Hovmöller diagrams for total precipitation rate
have been performed for each simulation case (31 days period). The diagrams
were evaluated for the stochastic convection scheme, for the reference compared
with the deterministic convection scheme and reanalysis data. For the investi-
gation, the area between 15°S and 15°N has been selected and only one ensemble
member for each case was considered. To represent the field in longitudinal-time
domain, averaging was performed over all latitudes. Below are the Hovmöller
diagrams for only three simulation cases: January 2017 (Fig. 3.8), April 2017
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(Fig. 3.9) and September 2017 (Fig. 3.10). These cases are selected as the
most representative and the features, discussed below, are typical for any other
cases.

Three longitudinal zones with maximum convective activity are very clearly
distinguished on the Hovmöller diagrams: around 30°E, 120°E and 60°W, cor-
responding to main centers of convection over the central Africa, far western
Pacific region and the Amazon basin. The diurnal cycle is also clearly observed
and most pronounced at the mentioned longitudinal zones. Another notable
feature is the organization of convective activity according to propagation pat-
terns in eastern and western directions. The observed patterns have a wide
range of time and space scales and CCEWs can be distinguished among them.
It should be noted, that the significant difference in the character of the pat-
terns in the numerical simulations with the stochastic convection scheme is
observed: the patterns have more thin and clear character compare to a more
diffuse patterns in the numerical simulations with the deterministic convection
scheme or reanalysis data.

In the numerical simulations with the stochastic convection scheme, one
of the most pronounced wave patterns is westward propagating waves with
relatively low phase speed, around 3-6 m s−1, occurring mainly over western
Pacific sector and Indian ocean, and with the strong signal during the southern
summer (Fig. 3.8). Similar patterns occur also in the eastern Pacific sector
with a relative low signal (i.e. Fig. 3.9). According to the described properties,
these wave patterns may correspond to a n = 1 ER waves. The signs of the ER
waves may be also well observed in the ERA5 Hovmöller diagrams, however,
in the simulations with the deterministic convection scheme their occurrence is
relatively low and the signal is relatively weak (i.e. Fig. 3.9).

Another relatively prominent westward propagating patterns are widely ob-
served in the stochastic simulations, for example in the Fig. 3.10. They are
mostly located over the western Africa and have a phase speed, around 15 m
s−1 and mostly triggered by the diurnal cycle. Similar but weaker structures
are also observed over the Amazon basin. According to the phase speed and
propagation time, these patterns may correspond to WIG waves and also occur
both in the deterministic simulations and in reanalysis data.

As for the MGR and n = 0 EIG waves, no significant signs of these types
of CCEWs were noted in numerical simulation with a stochastic convection
scheme. The eastward propagating wave patterns with phase speed of about
15-20 m s−1 over western Africa have been observed in the TB numerical sim-
ulations and reanalysis data (Fig. 3.10), which may be consistent with n = 0
EIG.

In the reanalysis and the numerical simulations with a deterministic con-
vection scheme, the eastward propagating patterns with phase speed around 20
m s−1 and propagation time about 10 days have been observed, mainly over
the Pacific and Atlantic Oceans. These patterns may be consistent with Kelvin
waves. They are relatively pronounced in the reanalysis Hovmöller diagrams
and less pronounced in the diagrams with the deterministic convection scheme
(Fig. 3.8 and Fig. 3.9). The signal of these wave patterns is relatively weak,
although, these CCEWs are known to be the strongest. In the numerical simu-
lations with the stochastic convection scheme, such patterns are not observed.
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Summarizing the above, individual wave patterns can be identified and clas-
sified based on their dispersive properties both in numerical simulations and
from reanalysis data. The most prominent observed waves are n = 1 ER and
WIG waves. With regard to the nature and occurrence of individual wave types,
the deterministic simulations and reanalysis data are relatively consistent with
each other and differ from the stochastic simulations, although the time series
and spatial structures showed similarities in representation of the precipitation
field which appeared to be higher between the two schemes. It should be noted
the absence of Kelvin waves in the numerical simulations with the stochastic
convection scheme, however, this type of CCEW is expected to be the most
prominent and common. In general, the Hovmöller diagrams for the reanalysis
data show a greater variety and clarity of the observed wave patterns than the
numerical simulations. However, the Hovmöller diagrams provide only a gen-
eral view on the tropical wave representation; for a more detailed and accurate
study, the space-time spectral analysis should be performed.

3.2.3 Wheeler-Kiladis space-time spectra

The goal of this subsection is to determine the zonally propagating waves in
meteorological fields and associate them with the types of equatorially trapped
wave modes. Method which is widely used for this purpose is the space-time
spectral analysis, which enables detection of a passing wave, including its fre-
quency, length, direction, and amplitude. This method is based on the de-
composition of the field dependent on longitude and time into eastward and
westward moving components in the wavenumber-frequency domain.

This study implemented the methodology proposed by WK99, where the
complex fast Fourier transform (FFT) is applied for the field decomposition.
First, the decomposition in zonal planetary wavenumber space is performed
by calculating complex FFTs in longitude to obtain Fourier coefficients for
each time and latitude. Further, complex FFTs is reapplied, but to the ob-
tained Fourier coefficients and over time, thereby obtaining the wavenumber-
frequency spectrum for each latitude. Then the wavenumber-frequency spec-
trum is summed over the latitude band. Furthermore, according to the SW the-
ory and WK99 is demonstrated, linear equatorial waves are either symmetric
or antisymmetric with respect to the equator, so the field can be decomposed
to symmetric and antisymmetric components. The gridded fields F , a func-
tion of latitude φ, can be written as F (φ) = Fs(φ) + Fa(φ), where Fs and Fa

are symmetric and antisymmetric components, respectively, and are given by
Fs(φ) = [F (φ)+F (−φ)]/2 and Fa(φ) = [F (φ)−F (−φ)]/2. The method applied
in the current study employs decomposition for antisymmetric and symmetric
terms, evaluation corresponding spectra and average value estimation.

The study of CCEWs by space-time spectral analysis, allowed to identify
tropical waves in the precipitation field (Lin et al. 2006; Hung et al. 2013; Kim
and Alexander 2013; Judt 2020; etc.). Using the method described above, the
space-time analysis for the total precipitation rate for the numerical simulations
with the PC stochastic convection scheme were performed. To compare the pre-
sentation of the tropical wave in PC simulations, the same analysis was carried
out for the numerical simulations with the TB deterministic convection scheme
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and ERA5 data. The investigated simulations cover the 31 days period. To
analyze the ERA5 data, the same 31-day simulation cases were used. It should
be noted that 31-day segments employed in this study is three times shorter
than the segments employed by WK99 (96-day segments), but still sufficient
for the timescales of interest. The resulting bandwidth was 1/31 cycles per day
(cpd) and 1 unit zonal wavenumber. Also, since available dataset contained
only 12 cases, the processed dataset was significantly shorter (1 versus 18 years
in WK99). To reduce the noise, the space-time spectra were calculated for each
simulation case and then averaged. Spectra for the numerical simulations are
also averaged over ensemble members. The latitude band between 15°S and
15°N was determined.

Fig. 3.11 shows the obtained antisymmetric and symmetric zonal wavenumber-
frequency power spectra for the total precipitation rate for both simulations
with the PC and TB convection schemes and ERA5 data. Power spectra are
presented for zonal wavenumbers between -20 and 20 and from a frequency of
1/31 to 0.8 cpd, where the dataset used, according to estimates, contains useful
information. The spectra are plotted together with the reference lines of the
dispersion curves from the SW theory, which best correspond to the observed
features of the wavenumber-frequency. The wavenumber-frequency power spec-
tra are smoother for the numerical simulations compared to the ERA5 data,
since they were also averaged by the ensemble members.

Figure 3.11: Zonal wavenumber-frequency power spectra of total precipitation
for simulations with the PC and TB schemes and ERA5 data. On the upper
panels are spectra for anti -asymmetric components, spectra for symmetrical
components are presented on the lower panels. The base-10 logarithm is taken
for plotting. The black lines are dispersion curves from the SW theory with the
equivalent depths of 12 and 50 m: in upper panels corresponding to the even
meridional mode-numbered equatorial waves and in bottom panels correspond-
ing to the odd meridional mode-numbered equatorial waves.



3.2. TROPICAL WAVES REPRESENTATION RESULTS 31

First of all, the broad red nature of the spectra in both zonal wavenumber
and frequency can be seen, which has been shown also in previous studies (e.g.
Gruber, 1974; Zangvil, 1975; Takayabu 1994b; WK99). Although, notable dif-
ferences, which are superimposed upon the background spectrum, between the
antisymmetric and symmetric components, as well as eastward and westward
propagation directions can be recognized both in simulations and reanalysis
data. Thus, in both components and both propagation directions the feature
with the greatest power may relate to the Madden-Julian oscillation (Madden
and Julian, 1994), which occurs predominantly at eastward wavenumbers up to
5 and in the symmetric components. However, insufficient length of the inves-
tigating period of time does not allow to make a certain conclusions. Based on
the areas corresponding to the dispersion curves, it is also possible to identify
the tropical wave signals. So, the ERA5 symmetric spectrum shows significant
spectral peaks of Kelvin waves together with quite weaker n = 1 ER and n = 1
WIG wave peaks. In the power spectrum of the antisymmentric component of
ERA5 total precipitation rate, MRG and n = 2 WIG waves are distinguish-
able, but eastward inertio-gravity waves both for n = 1 and n = 2 cannot be
recognized. The obtained results are in a good agreement with OLR spectra
obtained by WK99. In the numerical simulations, the signals of Kelvin, ER
and MRG waves are significantly weaker and almost indistinguishable for the
PC convection scheme, and no WIG and EIG wave signals are observed. The
weak representation of the Kelvin waves in the numerical simulations, especially
for the stochastic convection scheme, is consistent with the previous results for
the Hovmöller diagrams of total precipitation rate. However, the observed in
the Hovmöller diagrams strong signals of n = 1 ER and WIG waves does not
present in the space-time spectra for the numerical simulations.

Although, the wavenumber-frequency spectra for total precipitation rate
show a poor representation of the tropical waves in the numerical simula-
tions and there is a quite significant difference in representation between the
stochastic and deterministic convection schemes, the question arises whether
the tropical waves disappear in the simulations with the stochastic convection
scheme or are they not at all related to? To investigate this question, the
wavenumber-frequency spectra for wind divergence were evaluated following
the same methodology. Wind divergence were calculated for the three different
pressure levels: 300, 200 and 100 hPa. The obtained results of the space-time
spectral analysis are presented on the Fig. 3.12, Fig. 3.13 and Fig. 3.14.
The main common feature among the spectra for the all pressure levels is the
much higher similarity between the two schemes and the reanalysis in compar-
ison with the spectra of the total amount of precipitation. The intensity of
the redness of the background spectrum decreases with the increasing altitude
of pressure level, however it is more pronounced in the numerical simulations,
especially for the PC scheme, at all pressure levels.

Obtained spectra of wind divergence at 300 hPa, for two schemes and ERA5,
shows a strong signals of Kelvin, n = 1 ER and MRG waves and the strength of
the signals is similar among the spectra (Fig. 3.12). On the ERA5 spectrum, a
very weak signal of WIG is also observed. A relatively similar situation appears
for the 200 hPa pressure level (Fig. 3.13), however a stronger signal of n = 1
WIG occurs in the symmetric part of the ERA5 spectrum. The space-time



32 CHAPTER 3. TROPICAL WAVES REPRESENTATION

Figure 3.12: As in Fig. 3.11, but for the wind divergence at 300 hPa.

Figure 3.13: As in Fig. 3.11, but for the wind divergence at 200 hPa.

spectra for the 100 hPa pressure level are the most representative. The clear
signals of Kelvin, n = 1 ER and MRG waves can be observed, but in the
numerical simulations the signal is a slightly weaker comparing to reanalysis
data. The representation of the WIG waves still remains very poor both in the
PC and TB schemes, which may also be caused by the fact that the WIG waves
have in general much more weaker signals than other tropical waves.

Summarizing the results, in the space-time spectra for the wind divergence
at 300 hPa, 200 hPa and 100 hPa for the numerical simulations with the stochas-
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Figure 3.14: As in Fig. 3.11, but for the wind divergence at 100 hPa.

tic scheme, a relatively strong signals of the most prominent tropical waves
(Kelvin, n = 1 ER and MRG waves) are observed and consistent with the rep-
resentation of these waves in the numerical simulations with the deterministic
convection scheme and reanalysis data. Thus, based on these results, it can be
concluded that the tropical waves are presented in the stochastic simulations,
but they are poorly connected with convection since they have only a small
signal in the spectra of total precipitation.

To further investigate this hypothesis, the additional numerical simulations
for a longer time period (96 days) and higher model resolution (≈ 20 km,
R2B7, resulting bandwidth 1/96 cpd) were performed for one simulation case
and ensemble member. Applying of a longer period of time makes it possible
to cover a lower frequency and achieve a higher frequency distribution. Despite
the fact that the utilized model resolution is still not convection-permitting,
an attempt was made to estimate the influence of a higher resolution on the
representation of tropical waves. For these numerical simulations, the time-
space analysis of the total precipitation rate and OLR, as a proxy for convection,
was performed.

Fig. 3.15 shows the zonal wavenumber-frequency spectra of the total pre-
cipitation rate both for the simulations with the stochastic and deterministic
schemes. As for the total precipitation rate spectra for a shorter time period
and lower resolution, the signals of the Kelvin, n = 0 ER and MRG waves are
observed and the signals for the PC scheme are slightly weaker compare to TB
scheme. The spectra show a small sign of the n = 1 WIG waves, which was not
noted in Fig. 3.11. Based on the obtained results, a longer investigation time
period or higher resolution did not have a significant impact on the tropical
waves representation in the field of total precipitation rate. The spectra have a
more noisy behavior, since only one simulation case and ensemble member was
investigated. The wavenumber-frequency spectra for OLR are shown on Fig.
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Figure 3.15: As Fig. 3.11, but for the total precipitation rate only for simula-
tions with the PC and TB schemes for long runs with higher resolution.

3.16 and it should be noted that the signals of the tropical waves are very weak
both for the PC and TB schemes.

Figure 3.16: As in Fig. 3.15, but for the OLR.

Thereby, in the numerical simulations with the stochastic convection field,
the individual tropical waves have been identified from the total precipitation
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rate, wind divergence and OLR fields. However, the distinguishable signals
of the waves were observed only in the wind divergence spectra. The total
precipitation rate and OLR showed only weak signals of the tropical wave.
The tropical waves were presented in the numerical simulations but they were
not related to convection. Obtained results also show that the representation
of tropical waves is slightly better in the simulations with a the deterministic
scheme.
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Chapter 4

Predictability time limit estimation

In chapter 3, the representation of tropical waves in numerical simulations with
the stochastic convection scheme has been explored. The second part of this
study is the investigation of predictability time limits in the tropics, which is
the subject of this chapter. The first section of the chapter is dedicated to
the predictability time estimation both in physical and spectral spaces. In the
second section, the role of spectral slope in error propagation and predictability
limits is investigated by means of the simple Lilly model.

4.1 Predictability time comparison

In this section the predictability time limit estimation and error growth anal-
ysis for the tropics and mid-latitudes are given. The first subsection contains
the predictability time estimations for the different initial perturbation exper-
iments. In subsection 4.1.2, the scale-dependent estimations for the intrinsic
predictability times have been performed and the error growth rate and spectral
energy slope features are discussed.

4.1.1 Predictability time limit estimation in physical space

Comparison of the predictability times for the perturbation experiments with
different initial conditions (taking into account only the simulations with 31
days lead time and R2B6 resolution), aiming to study the current practical
and intrinsic predictability limits and the transition between them, have been
investigated. Estimations of the predictability time limits both in the tropics
and mid-latitudes for the predictability limits comparison in these two regions
have been evaluated. For the tropics, the area between 10°S and 10°N has been
selected. For the mid-latitudes, two latitude zones, 40°N-60°N for the northern
hemisphere and 40°S-60°S for the southern hemisphere, have been considered.
Tropopause region at the pressure level of 300 hPa has been chosen for the
analysis because this level does not affected by complex weather events and
relief features but it still have enough energy involved in convective processes.

For predictability time limit estimation, the difference kinetic energy (DKE)
approach, as the standard metric for quantifying error growth, has been em-
ployed. Since the experimental design envisages not only two simulations but

37
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contains five ensemble members for each simulation case, a generalized defini-
tion of DKE that averaging over all possible combination of pairs (Selz 2019)
has been applied. Difference kinetic energy per unit mass on a pressure level
at specific gridpoint for a case c is given by

∆ec(x, y) = var(u) + var(v), (4.1)

where the variance across the ensemble members is given by

var(u) =
1

N − 1

N∑
n=1

(ui − u)2, (4.2)

with u and v denoting zonal and meridional wind components, N is the ensem-
ble size and the overbar defines the ensemble mean.

For the tropics and mid-latitudes comparison, domain-averaged DKE error
metric has been evaluated as follows:

∆Ec =
1

A

∫
A

dA∆ec, (4.3)

where A is an area of averaging. Applying N = 5 in (4.1) and taking into
account (4.2), the domain-averaged difference kinetic energy ∆Ec for every
forecast lead time t has been evaluated.

For the ∆Ec saturation limit determination, the comparison with climato-
logical reference data has been performed. As climatological reference data,
the ERA5 reanalysis for twenty years has been employed as follows: daily wind
data at 0 UTC at the 300 hPa level for the time period from 2000 to 2019 years
have been taken (following Selz et al. 2022). For each simulation case, the
saturation limit was evaluated over an ensemble of 620 members: for each year,
31 subsequent days were taken, starting on the first day of each month (e.g. 1th
of October, 1th of November, etc.). In a similar way, applying N = 620, the
climatological difference kinetic energy ∆Eclim

c has been evaluated. Thus, for
the given threshold α < 1, the predictability time is determined as the earliest
t that satisfies the following condition:

∆Ec(t) ≥ α∆Eclim
c . (4.4)

To reach the saturation limit within the experimental period both in the tropics
and mid-latitudes, the threshold value α = 0.5 has been chosen.

The predictability time limit estimations both for the simulations with the
PC and TB convection schemes have been performed. For each perturbation
experiment, 12 predictability time limits for the tropics and 24 predictability
time limits for the mid-latitudes (for each of the two latitudinal bands) have
been estimated. Finally, mean predictability time limits over all simulation
cases and 95% confidence interval of the mean estimates for the tropics and
mid-latitudes have been evaluated. It should be taken into account that per-
formed averaging ignores potential seasonal and hemispheric differences. Such
differences of the predictability were assumed to be negligible compared to pre-
dictability dependence on the flow pattern.



4.1. PREDICTABILITY TIME COMPARISON 39

According to the method above, evaluated predictability time limits both
for the tropics and mid-latitudes are shown in Fig. 4.1. The predictability
time limit curves show similar behavior, but for all perturbation experiments,
the predictability time limit estimations in the tropics are about several days
longer than those in the mid-latitudes. The obtained predictability time limits
for all experiments are presented in the Tab. 4.1.

The 0.1%PC-experiment provides the closest estimations for the intrinsic
predictability and gives the predictability time limit values of 16.3 days in the
tropics and 12.8 days in the mid-latitudes. Approaching to practical predictabil-
ity by increasing initial condition rescale factor, the predictability time limit
decreases. For the 100%PC-experiment, the predictability time estimated value
is 11.0 days in the tropics and 8.6 days in the mid-latitudes. Thus, the differ-
ences between intrinsic and practical time limits is approximately 5 and 4 days
for the tropics and mid-latitudes, respectively, which may serve as estimations
of the potential improvement in predictability time limits by decreasing the er-
ror in the initial conditions. It should be noted that according to the obtained
results for the tropics, the potential improvement in predictability may be even
greater than in the mid-latitudes.

By decreasing error in the initial conditions from 100% to 10% for the sim-
ulations in the mid-latitudes, according to Selz et al. (2022), near-linear in-
creasing for the predictability limit times has been observed. Further error
decreasing in the initial conditions does not give a significant improvement in
predictability, which is typical also for tropics. However, for the rescale fac-
tors from 100% to 10%, the reduction in the error causes larger increase in the
predictability in the tropics compared to the mid-latitudes. This behavior may
lead to better potential predictability improvement, since the additional pre-
dictability increase from the error reduction from 10% to 0.1%, on the contrary,
is less for the tropics and amounts to 0.4 days (0.7 days for the mid-latitudes).

The experiments for the deterministic convection scheme show similar pat-
terns but with longer predictability time limit estimations, which could be
expected due to the noted overconfidence of the TB scheme (Selz and Craig
2015b). For the 10%TB- and 0.1%TB-experiments, the evaluated predictabil-
ity time limits are about 1.5 days better for the tropics and 1 day better for the
mid-latitudes compared to the stochastic simulations. The results of 100%TB-
experiment shows differences between two schemes around 0.5 days, but again
a slightly larger variance for the tropics. Thus, the presumed overconfidence of
the deterministic convection scheme is more pronounced for the tropics. The
obtained results also indicate that although the choice of the convection scheme
has a negligible effect on the current practical predictability, the effect can be-
come significant with reducing error in the initial conditions (Selz et al. 2022),
since the TB numerical simulations showed a possible predictability improve-
ment of about 6 and 5 days for the tropics and mid-latitudes, respectively.

The estimation results of practical predictability described above refer to
the numerical simulations without taking into account the singular vectors.
However, as noted in section 2.3, the singular vectors are currently operated in
ECMWF ensemble forecast system, so the current practical predictability limits
may be estimated more accurate by taking into account the singular vectors
in the initial condition uncertainty. The simulation study with adding of the
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Figure 4.1: Predictability limit time estimations based on climatological refer-
ence data evaluated by (4.4) with α = 0.5 for the different perturbation ex-
periments. The horizontal axis is logarithmic. The empty markers are slightly
shifted horizontally for clarity. The red and blue markers designate predictabil-
ity time limits for the tropics and mid-latitudes, respectively: full markers for
the PC simulations and empty markers for the TB simulations. The black mark-
ers designate the singular vector experiment, the green markers - estimations
based on ECMWF IFS. The vertical lines show the 95% confidence intervals of
the mean estimates.

Convection Region IC rescale factors [%]
scheme 100 100sv 50 20 10 0.1
Plant- tropics 10.97± 1.20 10.14± 1.06 13.18± 0.97 14.98± 1.05 15.91± 0.99 16.34± 0.76
Craig mid-latitudes 8.64± 0.34 7.55± 0.21 9.93± 0.49 11.54± 0.48 12.14± 0.41 12.76± 0.41

Tiedtke- tropics 11.53± 1.04 − − − 17.48± 1.27 17.80± 0.96
Bechthold mid-latitudes 8.96± 0.30 − − − 13.17± 0.46 13.81± 0.59

Table 4.1: Predictability time limits in days (Eq. (4.4) for α = 0.5) with the
95% confidence intervals of the mean estimates for the different perturbation
experiments. The designation "100sv" denotes the predictability time limit es-
timated for the 100% initial condition uncertainty with inclusion of the singular
vectors.

singular vectors (100%svPC-experiment) has been performed, the results of
the experiment show that predictability time limit estimations are about 1 day
shorter than the estimations for the 100%PC-experiment both for the tropics
and mid-latitudes. Thus, the obtained estimations indicate that the potential
predictability improvements estimated above may be about 1 day longer for
both regions.

In addition to the performed ICON numerical simulations, the practical
predictability time limits for the ECMWF IFS for the same simulation cases
have been evaluated. The obtained estimations are also shown in the Fig. 4.1
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and they are quite close to the the 100%svPC-experiment estimations, which
implies the similarity of the current practical predictability limits for the ICON
with the stochastic convection scheme and for the ECMWF IFS. Note that
these two forecast sets have the same initial conditions, since the 100%svPC-
experiment utilizes the initial conditions from the ECMWF’s EDA system and
the ECMWF IFS includes the singular vectors.

It should be noted that uncertainty for predictability limits are 2-3 times
larger for the tropics compared to the mid-latitudes for all simulations that
have been performed. This feature can be partly explained by different number
of simulation cases: twice as many cases have been evaluated for mid-latitudes
(for the northern and southern hemispheres).

4.1.2 Predictability time limit estimation in spectral space

This part of the study is dedicated to the further investigation of the intrinsic
predictability limit and uses the simulations with 0.1%-perturbations of the
initial condition uncertainty (for the 31 days lead time and R2B6 resolution).
An object of the study was both scale-dependent predictability time limits and
error growth rates over a spatial scale. The spectral energy slopes for the tropics
and mid-latitudes have been estimated and analyzed. As well as in subsection
4.1.1, the area between 10°S and 10°N for tropics and two latitude zones, 40°N
- 60°N and 40°S - 60°S, for the mid-latitudes have been considered. Also, the
tropopause region at the pressure level of 300 hPa has been chosen for the
analysis.

In current study, for investigation of error growth over a spatial scale, spec-
tral DKE has been implemented by applying Fourier transformation for the
spatial decomposition of DKE and KE. For each latitude in the tropics and
mid-latitudes, the one-dimensional Fourier transform with respect to longitude
has been applied. For each region, a constant mean zonal grid spacing was
assumed, determined by the zonal grid spacing of the mean latitude: 0°N for
the tropics and 50°N/S for the mid-latitudes. Introducing the spatial decom-
position, the spectral density of KE at the certain latitude for a case c is given
by

ẽc(k) =
1

2
(|ũi|2 + |ṽi|2), (4.5)

where ũi and ṽi are Fourier coefficients of the zonal and meridional wind com-
ponents of ensemble member i and are functions of the zonal wavenumber k.
The overbars again denote the average of all ensemble members.

Similarly as for the DKE in the physical space, for N -member ensemble,
the spectral DKE is generalized by averaging over all possible pairs:

∆ẽc(k) =
N

N − 1
(|ũi|2 + |ṽi|2 − |ũi|2 − |ṽi|2), (4.6)

namely is equal to a difference between the ensemble mean kinetic energy spec-
tral density and the kinetic energy spectral density of the ensemble mean.

To ensure that the domain-averaged spectral energy densities in wavenum-
ber space are consistent with the domain-averaged energies in physical space,
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the spectral KE and DKE have been normalized to satisfy the Parseval identity
(Durran et al. 2017). For the KE, the Parseval relation is given by

Ec =
1

A

∫
A

dAec(x, y) =

∫
k

dkẽc(k, y), (4.7)

where ec(x, y) is the kinetic energy per unit mass on a pressure level at specific
gridpoint for a case c. The overbar denotes the latitude average. For the DKE,
the Parseval relation is given by:

∆Ec =
1

A

∫
A

dA∆ec(x, y) =

∫
k

dk∆ẽc(k, y). (4.8)

In contrast to predictability time limit estimation in physical space, a scale-
dependent predictability time limit may be evaluated through the KE spec-
trum without a climatology reference. According to Selz and Craig (2015b),
the phases of ensemble members become completely uncorrelated on a certain
scale, if their DKE on that scale equals twice the background KE. Thus, the
background KE spectrum can be taken as a measure of error saturation and the
scale-dependent predictability time limit can be determinated as the earliest t
that satisfies the following condition:

1

2
∆ẽc(t, k) ≥ αẽc(t, k), (4.9)

where α < 1 is again a given threshold and the overbar denotes the average
over the latitude range. Note that the latitude averaging in (4.7), (4.8) and
(4.9) is possible due to the assumption of a constant mean zonal grid spacing.

Thus, for each forecast lead time, the spectral KE and DKE both for the
PC and TB convection schemes have been evaluated and normalized. The
investigation of the time-averaged KE spectrum, since it is the upper bound to
DKE growth rate, has been performed. The evaluated background KE spectra
for the tropics and mid-latitudes, averaged over all simulation cases are shown
in Fig. 4.2 (upper panel). Comparing two convection schemes it can be noted,
that the background KE spectra in the mid-latitudes are almost identical for
both schemes. However, in the tropics, on the small scales, the KE is smaller for
the TB scheme, but, starting from approximately 4000 km, it get equal to the
KE for the PC scheme and then becomes larger. In general, thought, initially
on small scales the difference between the kinetic energy in the tropics and mid-
latitudes is quite small, it increases towards large scales, and the background
KE becomes many times greater in the mid-latitudes. The described behavior
can be explained by the different slopes of the energy spectra for the tropics
and mid-latitudes.

For the PC scheme, an estimation of the slopes of the energy spectra over
a spatial scale with equidistant wavelength intervals on a logarithmic scale has
been performed (Fig. 4.2, lower panels). For each interval, the slope was esti-
mated using a polynomial fit function and it should be noted that over a spatial
scale, the slope of the energy spectrum was shallower for the tropics. Addition-
ally, the spectral slopes only for scales where neither forcing nor dissipation
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Figure 4.2: Background KE spectra(upper panel) and energy spectrum slopes
(lower panels) for the tropics and mid-latitudes. The vertical axis of upper
panel and all horizontal axes are logarithmic. The KE slopes are calculated for
the equidistant on a logarithmic scale intervals and a representative wavelength
of each interval is found as the geometric mean. The grey lines indicate the
slopes for the inertial range.

dominates (so-called inertial range) have been estimated. Relying on the re-
sults of the Global Atmoscheric Sampling Program described by Nastrom and
Gage (1984), the smallest and largest scales of inertial range were defined as 400
and 4000 km, respectively. In current study, for the tropics and mid-latitudes,
the scales closest to corresponding wavelengths were selected from the available
spectral analysis scales. From the polynomial fitting, KE spectral slope values
2.1 and 3.1 for the tropics and mid-latitudes, respectively have been evaluated.
Thus, the energy spectrum slope in the tropics is shallower than in the mid-
latitudes, which leads to smaller background kinetic energy at large scales. The
similar estimation of the slope in the tropics for the TB scheme provided KE
spectral slope value of 2.3, which may explain the larger kinetic energy than for
the PC scheme on the large scales, though the kinetic energy on the small scales
is smaller. The obtained estimations for KE spectral slope values are partially
in agreement with the results in Judt (2020), who also get the shallower spectral
slope for the tropics. Using a graphreader tool, the slopes of the background
kinetic energy from the Judt’s Fig. 5 on the same scales were estimated and
the slopes of 1.8 and 2.5 for the tropics and mid-latitudes, respectively, were
obtained.

Further, the evolution of the spectral DKE over a time scale for error growth
behavior investigation has been analyzed. The corresponding evaluated time
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Figure 4.3: DKE spectra for the 0.1%-experiments for the tropics and mid-
latitudes, evaluated from (4.6). Both axes are logarithmic. The green lines are
the DKE spectra for the first 7 days of the simulation plotted every 12 hours.
The yellow lines are the initial condition DKE plotted with magnification of
100 times. All the DKE spectra are divided by 2 to match the background KE
spectrum. The black lines indicate the background KE spectra.

evolution of the spectral DKE for the first 7 days of the simulation and back-
ground KE spectrum, as it is the upper limit of 0.5DKE, are presented in Fig.
4.3. Both the KE and DKE spectra were averaged over all simulation cases.
It can be seen that all DKE spectra shows its increasing with increasing the
scale. Towards the large scales from a certain scale, the error energy reaches the
maximum and the spectra become plane. It should be noted, that the standard
linear definition for the spectral density does not allow to register a pronounced
energy maximum. Selz et al. (2022) showed that use of the logarithmic defini-
tion ensures its clearer representation. Nevertheless, all experiments that have
been carried out in the current study show DKE increasing with time step in
the wavelength, at which the growth of the DKE stops. An explanation for the
upscale maximum movement can be found by considering the growth rates of
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Figure 4.4: Spectral DKE growth rates over forecast lead time(flt) for the
tropics and mid-latitudes, plotted for the first 7 days of the simulation. The
horizontal axis is logarithmic.

the DKE. Fig. 4.4 shows the growth rates of the spectral DKE for the same
period. The deceleration of the error growth with time is observed for all scales,
but it is especially pronounced on small scales, where its complete stop can be
observed when the saturation limit is reached. Therefore, the error saturation
on the small scales causes the error energy maximum to move up the scale.

In first 12 hours of the simulation, the growth rate of the spectral DKE
is extremely large both for the tropics and mid-latitudes, especially on the
small scales. However, comparing the two regions, in the tropics, the growth
rate over all scales and the difference between the growth rate on the small
and large scales are many times higher compared to the mid-latitudes, which
may be caused by the stronger convection activity in the tropics. After that
stage, the significant deceleration of the growth rate is observed and it is more
pronounced in the tropics, which can be caused by the lower background KE
spectrum. As the growth rate in the tropics is several times lower than in the
mid-latitudes, although the initial DKE spectra are larger in the tropics, after
one day the DKE equalizes, and then the mid-latitudinal DKE becomes larger.
Also, in contrast to the first 12 hours, for both regions, the growth rate on the
small scales is less than on the large scales as it approches the saturation limit.
In the tropics, the saturation limits are approached faster than in mid-latitudes,
and therefore the upscale movement of the error energy maximum is also faster
in the tropics.

As it was noted by Selz et al. (2022), the observed upscale error energy
maximum movement should not be taken as an indication of the upscale error
growth processes, since it is caused by the saturation on the small scales. On
the other hand, after a few days of the simulation, an approximately constant
error growth over the large scales is observed, especially in the mid-latitudes.
The observed in current study constant error growth was also observed in many
previous studies (e.g. Durran and Gingrich 2014; Judt 2018; Selz et al. 2022)
and was associated with a so-called "up-magnitude" error growth.

Comparing the evolution and growth rate of the spectral DKE for the PC
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and TB convection schemes, it was noted that in the mid-latitudes, although
the background KE spectra are similar for both convection schemes, the TB
scheme provides the lower DKE spectra for both regions, which may again
leads to its overconfidence. Similarly, in the tropics, the DKE values in the
spectra are lower for the TB scheme, however the background KE values are
also smaller on the small scales, which leads to a faster error saturation on
small scales (Fig. 4.4). Although, no significant differences in the growth rates
between the two schemes are observed in the mid-latitudes, in the tropics, the
lower DKE spectra values cause the much lower growth rate in the first 12 hours
of the simulation.

Finally, scale-dependent predictability time limits have been estimated based
on the spectral analysis of the KE and DKE values, applying equation (4.9)
with α = 0.5 again to reach the saturation limits within the experimental pe-
riod both in the tropics and mid-latitudes. Fig. 4.5 shows the predictability
time limits over spatial scale for the tropics and mid-latitudes both for the PC
and TB schemes. The mean predictability time limits were evaluated over all
simulation cases as described above.

Figure 4.5: Predictability time over spatial scale (4.9 with α = 0.5) for the
0.1%-experiments both for the PC and TB convection schemes for the tropics
and mid-latitudes. Both axes are logarithmic.

For the small scales, below approximately 1000 and 2000 km for the PC
and TB schemes, respectively, the predictability time limit is lower in the trop-
ics and can be connected to the faster approach to saturation limits observed
in the growth rate behavior (Fig. 4.4). However, for the large scales, the
predictability times in the tropics become larger. Thus, on the small scale ap-
proximately 250 km, the predictability time limit estimates are about 1.8 and
3.5 days for the tropics and mid-latitudes, respectively, but on the large scale
approximately 4000 km, the predictability time limit in the tropics is greater
than in the mid-latitudes and equals 13.9 days (11.5 days in the mid-latitudes).
In the mid-latitudes, the predictability time limit are longer for the TB convec-
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tion scheme and can be associated with the overconfidence of the scheme. So,
for the small scale about 250 km and for the large scale about 4000 km, the
predictability time limits equal 5.0 and 13.2 days, respectively. In the tropics,
on the small scales, the predictability time limit are shorter for the TB scheme
due to the lower saturation limit and equals 1.6 days. On the large scales, the
TB scheme shows longer predictability time estimations compared to the PC
scheme, therefore the intersection of the predictability time curves occurs on
the larger scales compared to the PC scheme. For the large scale about 4000
km, the predictability time limit for the TB scheme is equal to 14.8 days.

4.2 Error growth in spectral space

Since the simulation experiments of the previous chapters have shown the im-
portance of spectral slope features behavior in connection with error propaga-
tion, this section is dedicated to the study of the spectral slope by 2D model
for homogeneous turbulence in incompressible flow. The goal of this section is
to explore the role of spectral slope in longer predictability time limit for the
tropics on the base of the simple Lilly model.

In the first subsection, the basic theoretical concepts of the simple error
propagation model proposed by Lilly (1972, 1990) are presented. The second
subsection is devoted to the estimation of the error propagation times in the
context of this model.

4.2.1 Simple Lilly model

The theoretical model of Lorenz (1969) describes homogeneous turbulence in
2D incompressible flow. Lorenz considers the background kinetic energy spec-
trum of the flow E(k) proportional to a negative power law of the horizontal
wavenumber k:

E(k) = Ak−m, (4.10)

where A is some flow constant. According to the model, an upscale cascade
dominates in error growth and depends on the slope of E(k) and the initial error.
The initial errors on a small scale grow and mostly contaminate the adjacent
larger scale in a logarithmic sense. The growth of eddies on this adjacent scale
effects the next larger scale until the cascade reaches the largest scales.

To explain the dependence of error growth on the slope of E(k), Lorenz
(1969) and Lilly (1972) introduce a spectrally localized time constant τ(k),
considered as proportional to the circulation time of eddies at that scale. Based
on dimensional considerations, for each scale, an amplitude of a characteristic
circulation velocity v(k) is defined as [kE(k)]1/2. Lorenz suggests that the time
required for the initial errors localized on a scale k to grow and contaminate
the larger scale k/2 is characterized by τ(k), with τ(k) is given as an inverse of
circulation frequency:

τ(k) =
1

kv(k)
= [k3E(k)]−

1
2 . (4.11)
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Thus, the error propagation time from the small scale 2Nk to the large scale
k is given by a sum

∑N
n=0 τ(2nk) and is the timescale of predictability decay

(Lilly, 1972). Taking into account (4.10), the equations (4.11) shows that time
constant τ(k) does not depend on k for m = 3, which is a borderline case for
predictability. For m ≥ 3 an unlimited extension of predictability is possible
by reducing the scale and amplitude of the initial errors. However, for m < 3,
a complete loss of predictability for any nonzero initial error can be achieved
in a finite time.

Lilly (1990) roughly generalized the Lorenz’s result as an integral and re-
ceived the total time required for the predictability at a large scale k1 to be lost
by the upscale growth of initial errors at a small scale k0, given by

T =

∫ k0

k1

τ(k)d(ln k) =

∫ k0

k1

[k3E(k)]−1/2d(ln k), (4.12)

considering the wavenumber spectrum as continuous. The equation (4.12) es-
tablishes a relationship between the predictability limit and the slope of back-
ground kinetic energy spectrum.

Thus, the Lilly model is only a simple model for the error propagation in the
2D homogeneous flow based on the upscale error growth cascade, dependent on
the slope of the kinetic energy spectrum. However, for highly nonhomogeneous
circulations, in which the error growth in physical space is strongly localized
in the areas of moist convection, the error growth is not localized in spectral
space due to the Fourier transform uncertainty principle. Therefore, the pro-
posed successive scale-to-scale mechanism of error propagation can no longer
be applied, since any scale is contaminated by the error growth from a range of
different scales. Lloveras et. al. (2021) showed that, in consequence of that, the
error spectra are almost insensitive to the scale of initial perturbation and slope
of E(k). It should be also noted that, according to atmospheric observations,
the error propagation does not evolve successively scale-by-scale, but gradually
increases on all scales.

4.2.2 Error propagation time estimation

In this subsection, an analytical experiment to explore the role of the spectral
energy slope on the error propagation employing the Lilly model has been
performed. As the input data for the Lilly model, the slopes evaluated for
the tropics and mid-latitudes in subsection 4.1.2 have been applied, aiming to
obtain:

• estimations for the error propagation times for the different spectral slopes;

• comparison error propagation times with the corresponding estimations
obtained from the numerical simulations.

It should be noted that the Lilly model estimates the intrinsic limit of
predictability and the simulations from the 0.1%PC-experiment were applied,
which provides the closest estimations for the intrinsic predictability. The in-
ertial range of the spectrum between the wavelengths of 400 and 4000 km, as
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mentioned above, has been used by taking from the available spectral analysis
scales the scales closest to these wavelengths.

Since the Lilly model is a simple model for predictability time estimation,
for the current study, it was assumed to included an additional proportionality
constant γ into (4.12):

TL = γ

∫ k0

k1

[k3E(k)]−1/2d(ln k). (4.13)

Based on (4.10), E(k) for some wavenumber k can be obtained as E(k) =
E0(k/k0)

−m, where E0 is the background KE at the wavenumber k0. Substitut-
ing this expression into (4.13) and finding an analytical solution of the integral,
the time for errors to propagate from the small scale k0 to the large scale k1
can be derived as

TL =

γ 2
m−3E

− 1
2

0 k
−m

2
0

(
k

m−3
2

0 − k
m−3

2
1

)
for m 6= 3,

γE
− 1

2
0 k

− 3
2

0 (ln k0 − ln k1) for m = 3.
(4.14)

Thus, the error propagation time from the scale k0 to the scale k1 can be
retrieved if the slope of energy spectrum m, background kinetic energy on the
scale k0 and the proportionality constant γ are known. On the other hand,
from the equation (4.14), γ can be find as

γ =

m−3
2
TLE

1
2
0 k

m
2
0

(
k

m−3
2

0 − k
m−3

2
1

)−1
for m 6= 3,

TLE
1
2
0 k

3
2
0 (ln k0 − ln k1)

−1 for m = 3.
(4.15)

To perform estimations for the error propagation times for the different
spectral slopes, the constant γ should be fixed and evaluated from (4.15) based
on estimates from the numerical simulations, namely from the mid-latitude
spectral analysis: the spectral slope m1 = 3.1, kinetic energy Emidlat

0 and
the predictability time difference between the smallest and the largest scales
∆Tmidlat = 6.8 days (as TL). The obtained proportionality constant is γ = 5.3.
To assess the effect of the spectrum slope on the error propagation time, the
estimation of the error propagation time for the slope m2 = 2.1, obtained for
the tropics from the spectral analysis, has been performed. As an initial as-
sumption, it has been considered that on the small scale k0 the values of E0

are equal for different energy spectrum slopes (E0-assumption). Substituting
the constant γ and Emidlat

0 into (4.14), the error propagation time between the
smallest and the largest scales for the slope of m2 has been estimated as a value
of 12.2 days. Therefore, the obtained result shows that, according to the Lilly
model, a shallower slope of the energy spectrum leads to longer predictability.
For a comparison, the tropical predictability time difference ∆T trop equals 10.7
days.

To compare error propagation times with the corresponding estimations
obtained from the numerical simulations, the estimation described above has
been performed for the whole inertial range both for the slopes of m1 and
m2. Thus, the error propagation time from the nearest smaller scale k0 to
each scale ki from the inertial range TL(ki) has been evaluated from (4.14)
substituting the constant γ and Emidlat

0 . For the reference, from the numerical
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simulation estimations the differences in the predictability time limits between
each scale and the smallest scale have been determined. The obtained total
error propagation times both for the tropics and mid-latitudes are presented in
Fig. 4.6(a). As a result, the Lilly model, as well as the numerical simulations,
provides longer predictability time limits for the tropics compared to the mid-
latitudes over the considered spectrum range, therefore, longer predictability
for a shallower slope of E(k).

It should be noted, that the fact that, according to the Lilly model, a shal-
lower slope of the background kinetic energy corresponds to longer predictabil-
ity limit, is directly related to the spectral range, which has been investigated,
and connected to the background kinetic energy levels on the investigated scales.
Thus, if initially on small scales the background kinetic energy spectrum with
a shallower slope has a higher energy level than the energy spectrum with a
steeper slope, then with the increasing scale on a certain scale, the values of
the energy levels will become equal and for the scales larger than the scale of
intersection, the background kinetic energy spectrum with the shallower slope
will have lower values than the spectrum with a steeper slope.

By E0-assumption for the theoretical model, the background kinetic energy
at the smallest scale is the same in the tropics and mid-latitudes. It should
be noted, that the condition described above did not fit for the numerical
simulations: E0 in the mid-latitudes was approximately 2.7 times greater than
in the tropics. As the second step of the investigation, a similar predictability
assessment for m = 2.1 has been performed, this time taking into account
the difference of E0 for the two regions and considering Etrop

0 = Emidlat
0 /R,

where R is a certain ratio. The obtained predictability estimations are also
presented in Fig. 4.6(a) (dotted line) with R = 2.7 is taken from the numerical
simulation results. In the case of taking into account the E0 ratio the total
error propagation time in the tropics is larger comparing with the assumption
of equal E0, but then total error propagation time estimation is less consistent
with the numerical simulation estimations.

The last step of the investigation was the estimation of the error prop-
agation time without explicit specification of the E(k) slope by a numerical
integration of (4.13). The background KE obtained from the spectral analysis
has been used. Step by step, for each wavelength, the error propagation time
from the nearest smaller scale k0 to that scale ki δT int

L (ki) was evaluated as nu-
merical integral between considered scales. Total error propagation time from
the smallest scale to that scale T int

L (ki) has been determined as the sum of the
error propagation times for all smaller scales: T int

L (ki) =
∑ki

k=k0
δT int

L (k). The
obtained estimations are shown on the Fig. 4.6(b). The total error propagation
times for both parts of the analytical experiment are consistent with each other,
which may confirm the accuracy of the spectral slope estimations performed in
subsection 4.1.2.

The provided in the current study assessments show that for the Lilly model,
in which the upscale cascade depending on the slope of E(k) dominates in
error growth, a shallower slope leads to longer predictability. Furthermore, the
estimations for the total error propagation time showed that a shallower slope
not only provides longer predictability but also the larger increase in the total
error propagation time with increasing wavelength. The described behavior
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Figure 4.6: Total error propagation time estimations over spatial scale in the
tropics and mid-latitudes estimated (a) based on the explicit spectral slope
definition (4.14) and (b) by the numerical integration of (4.13). The horizontal
axis is logarithmic. The solid lines show the 0.1%PC-experiment estimations.
(a) The dashed red and blue lines are estimations for the Lilly model for m =
2.1 and m = 3.1, respectively. The dotted red line indicates the Lilly model
estimations for the tropics with the E0 ratio consideration. (b) The dashed
lines are the Lilly model estimations based on numerical integration.

is characteristic both when the slope of E(k) is specified and when E(k) is
substituted from the numerical model to the Lilly model. The same features
appear in the estimations obtained from the spectral analysis of the numerical
simulations.
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Chapter 5

Summary and discussion

In the current study, the investigation of the tropical waves representation and
estimation of the tropical predictability time limits in numerical simulations
with the stochastic convection scheme were performed. Two primary objec-
tives for the study were set. The first objective was the identification of the
individual types of tropical waves in the meteorological fields: total precipita-
tion, wind divergence and OLR. The second objective was the estimation of
the practical and intrinsic limits of the predictability in the tropics and inves-
tigation of the transition between them. The important part of the study was
the estimation of the intrinsic predictability limits in spectral space and the
slope of the background kinetic energy spectrum. Previous studies (e.g. Ying
and Zhang 2017; Judt 2020) have shown that tropical intrinsic predictability
limits are longer compare to the extratropics, especially at large scales. The
estimations of predictability time limits of the tropical waves have also shown
their relatively long limits (Ying and Zhang 2017; Li and Stechmann 2020;
Judt 2020), thus they may be associated with the longer tropical predictability
limits. With that the spectral slope of the background kinetic energy may play
a much more substantial role in the evolution of the error than the dynamics
(Rotunno and Snyder 2008; Lilly 1972). Thus, the unifying aim of the current
study was the examination of the hypothesis about the longer predictability
limits in the tropics and consideration of the tropical waves and nature of the
kinetic energy spectral slope as two possible sources of it.

To achieve the set objectives, the global numerical simulations on the base
of ICON, conducted by Selz et al. (2022), were used. For the current study,
the additional numerical simulations, also based on ICON, were performed for
a longer model lead time and higher model resolution. In total, the study
included eleven particular experiments: nine experiments of 31 days lead time
on ≈ 40 km resolution and two additional experiments of 96 days lead time
on ≈ 20 km resolution. All 31 days experiments contained 12 simulation cases
each and were initialized from a broad range of initial condition uncertainty:
from current estimates to reduced a thousand times to simulate the intrinsic
predictability limits. The majority of the numerical simulations was performed
for ICON with the stochastic convection scheme. The current study required
the perfect model assumption for the intrinsic predictability limit estimation
and applied the stochastic convection scheme to reduce the underestimation of
upscale error growth from convection. Additionally, the simulations with the
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deterministic convection scheme were used for the reference and comparison
study.

The identification of the tropical waves was carried out on the basis of the
time-longitude Hovmöller diagrams and Wheeler-Kiladis space-time analysis.
For the comparison, the investigation was performed also for the numerical
simulations with the deterministic convection scheme and the reanalysis data.
On the Hovmöller diagrams for the total precipitation rate, a clear diurnal
cycle and three longitudinal zones with strong convection activity are evidently
visible, in line with tropical meteorology. In addition, zonally propagating
systems with high precipitation intensity are notable, among which the specific
tropical wave types can be recognized based on the propagation time, speed
and direction. Thus, the wave patterns corresponding to ER and WIG waves
were identified, which occur both in the stochastic numerical simulations and
in the deterministic simulations and the reanalysis. However, the strength and
character of these patterns differ for the PC scheme: patterns are very thin
and distinct, with high precipitation concentration in contrast to more smooth
and diffuse patterns for the TB scheme and ERA5. The significant difference
between the numerical simulations with the stochastic scheme and two other
data sources is the absence of Kelvin waves, which clearly occur in the TB and
ERA5 diagrams, although are relatively weak, and are generally considered the
most prominent and common type of CCEWs.

Further investigation of the tropical waves representation was performed
by the means of the Wheeler-Kiladis space-time spectra diagnostic for the total
precipitation rate, wind divergence (at 300, 200 and 100 hPa pressure level) and
OLR. Consistent with the previous studies, the obtained spectra have a broad
red nature, however, features superimposed upon the background spectrum can
be recognized. Thus, on the Wheeler-Kiladis diagrams for total precipitation
rate and OLR, a weak signals of Kelvin, ER and MRG waves are observed.
Comparing the simulations with the stochastic and deterministic schemes, the
wave signals are slightly weaker for the stochastic scheme. Furthermore, the
simulations for both schemes show significantly weaker signals than the reanal-
ysis and do not contain signs of WIG, appearing in the reanalysis and observed
on the Hovmöller diagrams. However, the Wheeler-Kiladis diagrams for the
wind divergence show a robust consistency between the convection schemes
and the reanalysis for each investigated pressure levels. All three data sources
obtain the signals of Kelvin, ER and MRG waves and the strength of these
signals is similar among the sources, although the signals for the reanalysis
are slightly stronger above the tropopause level (200 and 100 hPa). With the
increasing altitude, the red nature of the spectra is less prominent and the sig-
nals of the tropical waves become clearer. However, the numerical simulations
still show no prominent signals of WIG waves. Thereby, although the tropical
waves are represented insufficiently in the total precipitation and OLR fields
in the numerical simulation, robust wave signals can be identified in the wind
divergence field. The obtained results may indicate that, although the tropical
waves are represented in the numerical simulations with convection schemes,
they are slightly coupled to the convection. Further, it can be assumed that the
choice of the convection scheme affects the representation of coupling, since the
tropical waves signals in total precipitation rate and OLR fields are weaker for
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the stochastic scheme, although the signals in the wind divergence field show a
similar strength. The misrepresentation of the CCEWs in current NWP mod-
els and reanalysis is known. Thus, comparison of the range of reanalyses on
different model resolutions and with different convection schemes with observa-
tions show their significant deficiencies in representation of CCEWs (Kim and
Alexander 2013).

The assessment of the predictability time limits in physical space in the
numerical simulations with the stochastic convection scheme were performed
for the range of the initial conditions perturbations, estimating the limit of
current practical predictability, the limit very close to the intrinsic predictability
limit and the transition between them. The estimations were performed both
for the tropics and mid-latitudes to investigate the latitude dependence of the
predictability time limits. The numerical simulations with the deterministic
scheme were were also applied for the comparison. The obtained predictability
time limits in the tropics are significantly longer than for the mid-latitudes
for each range of the perturbations in the initial conditions. The intrinsic
limit of predictability in the mid-latitudes is around two weeks and in the
tropics this limit exceeds two weeks. Both estimations are consistent with many
previous studies. A significant approach to the intrinsic limit of predictability
can be achieved by 90% reduction of the initial conditions uncertainty, further
uncertainty reduction will lead to relatively small improvement. The potential
predictability improvement is larger in the tropics: 4-5 and 5-6 days for the mid-
latitudes and tropics, respectively, depending on if singular vectors are included.
Furthermore, predictability limis in the tropics show larger improvement for
the same percentage of uncertainty reduction. However, since the accuracy of
initial conditions in the tropics is currently improving more slowly compare
to the mid-latitudes, it can be expected that it may take longer to reach the
intrinsic predictability limit in the tropics. For the deterministic convection
scheme the estimations of the predictability limit were longer compare to the
stochastic scheme and this trend was more significant for the larger reduction
of the initial condition uncertainty, thus the choice of the convection scheme
may become significant with reducing uncertainty in the initial conditions.

The estimation of the intrinsic predictability limits was also performed in
spectral space. For the small scales, the predictability time limits in the mid-
latitude are longer compare to the tropics, however for the large scale the oppo-
site is true, which is consistent with previous studies. The investigation of error
growth based on spectral DKE show a fast downscale error propagation over
first few hours and the error growth rate is significantly higher in the tropics
especially on the small scales. Following few days, error growth slows down be-
coming lower in the tropics and upscale error propagation is observed. After this
period, errors approach saturation limits on the small scale and up-magnitude
behavior on the synoptic and planetary scales dominates, also noted in range of
other studies. In the tropics the error saturation become faster, which together
with the larger error growth during first few hours leads to relatively short
predictability limits on the small scales. Thus, shorter predictability limits on
the small scales in the tropics may be explained by impact of strong convec-
tive processes, while longer predictability on the large scales may potentially
be associated with the tropical waves.
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However, the assessment of the spectral slope of background kinetic en-
ergy in inertial range show a significant difference between the tropics and
mid-latitudes. The obtained slope in the tropics is shallower than in the mid-
latitudes (2.1 versus 3.1) and potentially may also affect the tropical predictabil-
ity time limits. The investigation of the role of spectral slope in predictability
limits was performed using the simple Lilly model, in which for error propaga-
tion time only the kinetic energy spectrum is considered. For the comparison,
flows with two different spectral slopes were investigated and the slopes were
chosen as the obtained in spectral analysis. It was assumed that the flows have
the same background kinetic energy at the smallest scale of the investigated
range to evaluate effect on error propagation time only of the different slope
values. The Lilly model provides a longer predictability time limits for the
shallower slope, which may indicate that the shallower tropical slope itself may
lead to a longer predictability in the tropics. Further, little bit more realistic
case were investigated assuming that the energy values at the smallest scale are
related with the certain ratio, consistent with the numerical simulations. In this
case, the predictability estimates for a shallower slope were even longer than
previous Lilly estimations and estimations from the numerical simulations. It
may indicate that the long predictability from the nature of the spectral slope
may be reduced by the atmospheric processes presented in the numerical mod-
els, in contrast of simple theoretical model.

Summarizing all obtained results, the predictability time estimations pro-
vided, as was expected, longer tropical predictability, especially for the large
scales. According to the identification of the tropical waves, although certain
wave signals were recognized, the numerical simulations with the stochastic con-
vection scheme are exposed a significant misrepresentation of tropical waves.
The misrepresentation makes it difficult to estimate their effect on the tropical
predictability. Further investigation is needed, which can consist of the sep-
aration of individual wave types based on filtering in wavenumber-frequency
domain and estimation of their predictability limits. However, the investiga-
tion of the spectral slope role in longer predictability showed a significant sign
that the shallower spectral slope may be a source of the longer predictability
limits, but it should be taking into account that Lilly model is only a simple
model of error propagation assumed the upscale error grown. Various model
studies and atmospheric observations show rather up-magnitude error growth.
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